ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-30
    Description: At sea, wind forcing is responsible for the formation and development of surface waves and represents an important source of near-surface turbulence. Therefore, processes related to near-surface turbulence and wave breaking, such as sea spray emission and air–sea gas exchange, are often parameterised with wind speed. Thus, shipborne wind speed measurements provide highly relevant observations. They can, however, be compromised by flow distortion due to the ship's structure and objects near the anemometer that modify the airflow, leading to a deflection of the apparent wind direction and positive or negative acceleration of the apparent wind speed. The resulting errors in the estimated true wind speed can be greatly magnified at low wind speeds. For some research ships, correction factors have been derived from computational fluid dynamic models or through direct comparison with wind speed measurements from buoys. These correction factors can, however, lose their validity due to changes in the structures near the anemometer and, thus, require frequent re-evaluation, which is costly in either computational power or ship time. Here, we evaluate if global atmospheric reanalysis data can be used to quantify the flow distortion bias in shipborne wind speed measurements. The method is tested on data from the Antarctic Circumnavigation Expedition onboard the R/V Akademik Tryoshnikov, which are compared to ERA-5 reanalysis wind speeds. We find that, depending on the relative wind direction, the relative wind speed and direction measurements are biased by −37 % to +22 % and -17∘ to +11∘ respectively. The resulting error in the true wind speed is +11.5 % on average but ranges from −4 % to +41 % (5th and 95th percentile). After applying the bias correction, the uncertainty in the true wind speed is reduced to ±5 % and depends mainly on the average accuracy of the ERA-5 data over the period of the experiment. The obvious drawback of this approach is the potential intrusion of model biases in the correction factors. We show that this problem can be somewhat mitigated when the error propagation in the true wind correction is accounted for and used to weight the observations. We discuss the potential caveats and limitations of this approach and conclude that it can be used to quantify flow distortion bias for ships that operate on a global scale. The method can also be valuable to verify computational fluid dynamic studies of airflow distortion on research vessels.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-15
    Description: Stable water isotopologues (SWIs) are useful tracers of moist diabatic processes in the atmospheric water cycle. They provide a framework to analyse moist processes on a range of timescales from large-scale moisture transport to cloud formation, precipitation and small-scale turbulent mixing. Laser spectrometric measurements on research vessels produce high-resolution time series of the variability of the water vapour isotopic composition in the marine boundary layer. In this study, we present a 5-month continuous time series of such ship-based measurements of δ2H and δ18O from the Antarctic Circumnavigation Expedition (ACE) in the Atlantic and the Southern Ocean in the time period from November 2016 to April 2017. We analyse the drivers of meridional SWI variations in the marine boundary layer across diverse climate zones in the Atlantic and Southern Ocean using Lagrangian moisture source diagnostics and relate vertical SWI differences to near-surface wind speed and ocean surface state. The median values of δ18O, δ2H and deuterium excess during ACE decrease continuously from low to high latitudes. These meridional SWI distributions reflect climatic conditions at the measurement and moisture source locations, such as air temperature, specific humidity and relative humidity with respect to sea surface temperature. The SWI variability at a given latitude is highest in the extratropics and polar regions with decreasing values equatorwards. This meridional distribution of SWI variability is explained by the variability in moisture source locations and its associated environmental conditions as well as transport processes. The westward-located moisture sources of water vapour in the extratropics are highly variable in extent and latitude due to the frequent passage of cyclones and thus widen the range of encountered SWI values in the marine boundary layer. Moisture loss during transport further contributes to the high SWI variability in the extratropics. In the subtropics and tropics, persistent anticyclones lead to well-confined narrow easterly moisture source regions, which is reflected in the weak SWI variability in these regions. Thus, the expected range of SWI signals at a given latitude strongly depends on the large-scale circulation. Furthermore, the ACE SWI time series recorded at 8.0 and 13.5 m above the ocean surface provide estimates of vertical SWI gradients in the lowermost marine boundary layer. On average, the vertical gradients with height found during ACE are -0.1‰m-1 for δ18O, -0.5‰m-1 for δ2H and 0.3 ‰ m−1 for deuterium excess. Careful calibration and post-processing of the SWI data and a detailed uncertainty analysis provide a solid basis for the presented gradients. Using sea spray concentrations and sea state conditions, we show that the vertical SWI gradients are particularly large during high wind speed conditions with increased contribution of sea spray evaporation or during low wind speed conditions due to weak vertical turbulent mixing. Although further SWI measurements at a higher vertical resolution are required to validate these findings, the simultaneous SWI measurements at several heights during ACE show the potential of SWIs as tracers for vertical mixing and sea spray evaporation in the lowermost marine boundary layer.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-01
    Description: Uncertainty in radiative forcing caused by aerosol–cloud interactions is about twice as large as for CO2 and remains the least well understood anthropogenic contribution to climate change. A major cause of uncertainty is the poorly quantified state of aerosols in the pristine preindustrial atmosphere, which defines the baseline against which anthropogenic effects are calculated. The Southern Ocean is one of the few remaining near-pristine aerosol environments on Earth, but there are very few measurements to help evaluate models. The Antarctic Circumnavigation Expedition: Study of Preindustrial-like Aerosols and their Climate Effects (ACE-SPACE) took place between December 2016 and March 2017 and covered the entire Southern Ocean region (Indian, Pacific, and Atlantic Oceans; length of ship track 〉33,000 km) including previously unexplored areas. In situ measurements covered aerosol characteristics [e.g., chemical composition, size distributions, and cloud condensation nuclei (CCN) number concentrations], trace gases, and meteorological variables. Remote sensing observations of cloud properties, the physical and microbial ocean state, and back trajectory analyses are used to interpret the in situ data. The contribution of sea spray to CCN in the westerly wind belt can be larger than 50%. The abundance of methanesulfonic acid indicates local and regional microbial influence on CCN abundance in Antarctic coastal waters and in the open ocean. We use the in situ data to evaluate simulated CCN concentrations from a global aerosol model. The extensive, available ACE-SPACE dataset (https://zenodo.org/communities/spi-ace?page=1&size=20) provides an unprecedented opportunity to evaluate models and to reduce the uncertainty in radiative forcing associated with the natural processes of aerosol emission, formation, transport, and processing occurring over the pristine Southern Ocean.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-26
    Description: Meridional atmospheric transport is an important process in the climate system and has implications for the availability of heat and moisture at high latitudes. Near-surface cold and warm temperature advection over the ocean in the context of extratropical cyclones additionally leads to important air–sea exchange. In this paper, we investigate the impact of these air–sea fluxes on the stable water isotope (SWI) composition of water vapour in the Southern Ocean’s atmospheric boundary layer. SWIs serve as a tool to trace phase change processes involved in the atmospheric water cycle and, thus, provide important insight into moist atmospheric processes associated with extratropical cyclones. Here we combine a 3-month ship-based SWI measurement data set around Antarctica with a series of regional high-resolution numerical model simulations from the isotope-enabled numerical weather prediction model COSMOiso. We objectively identify atmospheric cold and warm temperature advection associated with the cold and warm sector of extratropical cyclones, respectively, based on the air–sea temperature difference applied to the measurement and the simulation data sets. A Lagrangian composite analysis of temperature advection based on the COSMOiso simulation data is compiled to identify the main processes affecting the observed variability of the isotopic signal in marine boundary layer water vapour in the region from 35 to 70◦ S. This analysis shows that the cold and warm sectors of extratropical cyclones are associated with contrasting SWI signals. Specifically, the measurements show that the median values of δ18O and δ2H in the atmospheric water vapour are 3.8 ‰ and 27.9 ‰ higher during warm than during cold advection. The median value of the second-order isotope variable deuterium excess d, which can be used as a measure of non-equilibrium processes during phase changes, is 6.4 ‰ lower during warm than during cold advection. These characteristic isotope signals during cold and warm advection reflect the opposite air–sea fluxes associated with these large-scale transport events. The trajectory-based analysis reveals that the SWI signals in the cold sector are mainly shaped by ocean evaporation. In the warm sector, the air masses experience a net loss of moisture due to dew deposition as they are advected over the relatively colder ocean, which leads to the observed low d. We show that additionally the formation of clouds and precipitation in moist adiabatically ascending warm air parcels can decrease d in boundary layer water vapour. These findings illustrate the highly variable isotopic composition in water vapour due to contrasting air–sea interactions during cold and warm advection, respectively, induced by the circulation associated with extratropical cyclones. SWIs can thus potentially be useful as tracers for meridional air advection and other characteristics associated with the dynamics of the storm tracks over interannual timescales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...