ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 53 (1997), S. 151-158 
    ISSN: 0006-3592
    Schlagwort(e): biofilms ; biofilm structure ; diffusivity ; mass transport in biofilms ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: A new technique for the determination of local diffusion coefficients in biofilms is described. It is based on the microinjection of fluorescent dyes and quantitative analysis of the subsequent plume formation using confocal laser microscopy. The diffusion coefficients of fluorescein (MW 332), TRITC-IgG (MW 150000) and phycoerythrin (MW 240000) were measured in the cell clusters and interstitial voids of a heterogeneous biofilm. The diffusivities measured in the voids were close to the theoretical values in water. Fluorescein had the same diffusivity in cell clusters, voids, and sterile medium. TRITC-IgG did not diffuse in cell clusters, presumably due to binding to the cell cluster matrix. After treatment of the biofilm with bovine serum albumin, binding capacity decreased and the diffusion coefficient could be measured. The diffusivity of phycoerythrin in cell clusters was impeded by 41%, compared to interstitial voids. From the diffusion data of phycoerythrin it was further calculated that the cell cluster matrix had the characteristics of a gel with 0.6 nm thick fibers and pore diameters of 80 nm. © 1997 John Wiley & Sons, Inc.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 636-641 
    ISSN: 0006-3592
    Schlagwort(e): biofilm ; hydrodynamics ; mass transport ; particle tracking ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Liquid flow was studied in aerobic biofilms, consisting of microbial cell clusters (discrete aggregates of densely packed cells) and interstitial voids. Fluorescein microinjection was used as a qualitative technique to determine the presence of flow in cell clusters and voids. Flow velocity profiles were determined by tracking fluorescent latex spheres using confocal microscopy. Liquid was flowing through the voids and was stagnant in the cell clusters. Consequently, in voids both diffusion and convection may contribute to mass transfer, whereas in cell clusters diffusion is the dominant factor. The flow velocity in the biofilm depended on the average flow velocity of the bulk liquid. The velocity profiles in biofilms were linear and the velocity was zero at the substratum surface. The velocity gradients within biofilms were 50% of that near walls without biofilm coverage. The influence of the biofilm roughness on the flow velocity profiles was similar to that caused by rigid roughness elements. © 1994 John Wiley & Sons, Inc.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 1131-1138 
    ISSN: 0006-3592
    Schlagwort(e): confocal microscopy ; microelectrodes ; cell clusters ; pores ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Aerobic biofilms were found to have a complex structure consisting of microbial cell clusters (discrete aggregates of densely packed cells) and interstitial voids. The oxygen distribution was strongly correlated with these strutures. The voids facilitated oxygen transport from the bulk liquid through the biofilm, supplying approximately 50% of the total oxygen consumed by the cells. The mass transport rate from the bulk liquid is influenced by the biofilm structure; the observed exchange surface of the biofilm is twice that calculated for a simple planar geometry. The oxygen diffusion occurred in the direction normal to the cluster surfaces, the horizontal and vertical components of the oxygen gradients were of equal importance. Consequently, for calculations of mass transfer rates a three-dimensional model is necessary. These findings imply that to accurately describe biofilm activity, the relation between the arrangement of structural components and mass transfer must be undrstood. © 1994 John Wiley & Sons, Inc.
    Zusätzliches Material: 8 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 56 (1997), S. 681-688 
    ISSN: 0006-3592
    Schlagwort(e): biofilm ; confocal scanning laser microscopy ; laminar flow ; liquid flow velocity ; mass transfer coefficient ; microelectrodes ; Reynolds number ; Sherwood number ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: The relationship between local mass transfer coefficient and fluid velocity in heterogenous biofilms was investigated by combining microelectrodes and confocal scanning laser microscopy (CSLM). The biofilms were grown for up to 7 days and consisted of cell clusters separated by interstitial channels. Mass transfer coefficient depth profiles were measured at specific locations in the cell clusters and channels at average flow velocities of 2.3 and 4.0 cm/s. Liquid flow velocity profiles were measured in the same locations using a particle tracking technique. The velocity profiles showed that flow in the open channel was laminar. There was no flow at the top surface of the biofilm cell clusters but the mass transfer coefficient was 0.01 cm/s. At the same depth in a biofilm channel, the flow velocity was 0.3 cm/s and the mass transfer coefficient was 0.017 cm/s. The mass transfer coefficient profiles in the channels were not influenced by the surrounding cell clusters. Local flow velocities were correlated with local mass transfer coefficients using a semi-theoretical mass transfer equation. The relationship between the Sherwood number (Sh,) the Reynolds number (Re,) and the Schmidt number (Sc) was found using the experimental data to find the dimensionless empirical constants (n1, n2, and m) in the equation Sh = n1 + n2Rem Sc1/3. The values of the constants ranged from 1.45 to 2.0 for n1, 0.22 to 0.28 for n2, and 0.21 to 0.60 for m. These values were similar to literature values for mass transfer in porous media. The Sherwood number for the entire flow cell was 10 when the bulk flow velocity was 2.3 cm/s and 11 when the bulk flow velocity was 4.0 cm/s. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 681-688, 1997.
    Zusätzliches Material: 6 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 536-544 
    ISSN: 0006-3592
    Schlagwort(e): biofilm ; streamers ; biofouling ; drag ; fast Fourier transform analysis ; hydrodynamics ; oscillations ; pressure drop ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Mixed population biofilms consisting of Pseudomonas aeruginosa, P. fluorescens, and Klebsiella pneumoniae were grown in a flow cell under turbulent conditions with a water flow velocity of 18 cm/s (Reynolds number, Re, =1192). After 7 days the biofilms were patchy and consisted of cell clusters and streamers (filamentous structures attached to the downstream edge of the clusters) separated by interstitial channels. The cell clusters ranged in size from 25 to 750 μm in diameter. The largest clusters were approximately 85 μm thick. The streamers, which were up to 3 mm long, oscillated laterally in the flow. The motion of the streamers was recorded at various flow velocities up to 50.5 cm/s (Re 3351) using confocal scanning laser microscopy. The resulting time traces were evaluated by image analysis and fast Fourier transform analysis (FFT). The amplitude of the motion increased with flow velocity in a sigmoidal shaped curve, reaching a plateau at an average fluid flow velocity of approximately 25 cm/s (Re 1656). The motion of the streamers was possibly limited by the flexibility of the biofilm material. FFT indicated that the frequency of oscillation was directly proportional to the average flow velocity (u(ave)) below 9.5 cm/s (Re 629). At u(ave) greater than 9.5 cm/s, oscillation frequencies were above our measurable frequency range (0.12-6.7 Hz). The oscillation frequency was related to the flow velocity by the Strouhal relationship, suggesting that the oscillations were possibly caused by vortex shedding from the upstream biofilm clusters. A loss coefficient (k) was used to assess the influence of biofilm accumulation on pressure drop. The k across the flow cell colonized with biofilm was 2.2 times greater than the k across a clean flow cell. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 536-544, 1998.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-11-25
    Beschreibung: Extracellular DNA (eDNA) is a critical component of the extracellular matrix of bacterial biofilms that protects the resident bacteria from environmental hazards, which includes imparting significantly greater resistance to antibiotics and host immune effectors. eDNA is organized into a lattice-like structure, stabilized by the DNABII family of proteins, known to have high affinity and specificity for Holliday junctions (HJs). Accordingly, we demonstrated that the branched eDNA structures present within the biofilms formed by NTHI in the middle ear of the chinchilla in an experimental otitis media model, and in sputum samples recovered from cystic fibrosis patients that contain multiple mixed bacterial species, possess an HJ-like configuration. Next, we showed that the prototypic Escherichia coli HJ-specific DNA-binding protein RuvA could be functionally exchanged for DNABII proteins in the stabilization of biofilms formed by 3 diverse human pathogens, uropathogenic E. coli, nontypeable Haemophilus influenzae, and Staphylococcus epidermidis. Importantly, while replacement of DNABII proteins within the NTHI biofilm matrix with RuvA was shown to retain similar mechanical properties when compared to the control NTHI biofilm structure, we also demonstrated that biofilm eDNA matrices stabilized by RuvA could be subsequently undermined upon addition of the HJ resolvase complex, RuvABC, which resulted in significant biofilm disruption. Collectively, our data suggested that nature has recapitulated a functional equivalent of the HJ recombination intermediate to maintain the structural integrity of bacterial biofilms.
    Print ISSN: 0027-8424
    Digitale ISSN: 1091-6490
    Thema: Biologie , Medizin , Allgemeine Naturwissenschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2006-09-19
    Print ISSN: 1618-2642
    Digitale ISSN: 1618-2650
    Thema: Chemie und Pharmazie
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2005-01-01
    Print ISSN: 0966-842X
    Digitale ISSN: 1878-4380
    Thema: Biologie
    Publiziert von Cell Press
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
  • 10
    Publikationsdatum: 2016-01-01
    Digitale ISSN: 2058-5276
    Thema: Biologie
    Publiziert von Springer Nature
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...