ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-01
    Description: Background:The rising temperature of the world’s oceans has become a major threat to coral reefs globally as the severityand frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropicalAtlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin.Methodology/Principal Findings:Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers’ field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles.Conclusions/Significance:Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA CoralReef Watch’s Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality willundoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate
    Description: NOAA Coral Reef Conservation Program
    Description: Article Nr: e13969
    Keywords: Biology ; Ecology ; Environment ; Fisheries ; Caribbean Sea ; coral reefs ; bleaching ; climate change ; temperature effects ; CCMI
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 1-9
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Meiling, S. S., Muller, E. M., Lasseigne, D., Rossin, A., Veglia, A. J., MacKnight, N., Dimos, B., Huntley, N., Correa, A. M. S., Smith, T. B., Holstein, D. M., Mydlarz, L. D., Apprill, A., & Brandt, M. E. Variable species responses to experimental stony coral tissue loss disease (SCTLD) exposure. Frontiers in Marine Science, 8, (2021): 670829, https://doi.org/10.3389/fmars.2021.670829.
    Description: Stony coral tissue loss disease (SCTLD) was initially documented in Florida in 2014 and outbreaks with similar characteristics have since appeared in disparate areas throughout the northern Caribbean, causing significant declines in coral communities. SCTLD is characterized by focal or multifocal lesions of denuded skeleton caused by rapid tissue loss and affects at least 22 reef-building species of Caribbean corals. A tissue-loss disease consistent with the case definition of SCTLD was first observed in the U.S. Virgin Islands (USVI) in January of 2019 off the south shore of St. Thomas at Flat Cay. The objective of the present study was to characterize species susceptibility to the disease present in St. Thomas in a controlled laboratory transmission experiment. Fragments of six species of corals (Colpophyllia natans, Montastraea cavernosa, Orbicella annularis, Porites astreoides, Pseudodiploria strigosa, and Siderastrea siderea) were simultaneously incubated with (but did not physically contact) SCTLD-affected colonies of Diploria labyrinthiformis and monitored for lesion appearance over an 8 day experimental period. Paired fragments from each corresponding coral genotype were equivalently exposed to apparently healthy colonies of D. labyrinthiformis to serve as controls; none of these fragments developed lesions throughout the experiment. When tissue-loss lesions appeared and progressed in a disease treatment, the affected coral fragment, and its corresponding control genet, were removed and preserved for future analysis. Based on measures including disease prevalence and incidence, relative risk of lesion development, and lesion progression rates, O. annularis, C. natans, and S. siderea showed the greatest susceptibility to SCTLD in the USVI. These species exhibited earlier average development of lesions, higher relative risk of lesion development, greater lesion prevalence, and faster lesion progression rates compared with the other species, some of which are considered to be more susceptible based on field observations (e.g., P. strigosa). The average transmission rate in the present study was comparable to tank studies in Florida, even though disease donor species differed. Our findings suggest that the tissue loss disease affecting reefs of the USVI has a similar epizootiology to that observed in other regions, particularly Florida.
    Description: This work was supported by the National Science Foundation (Biological Oceanography) award number 1928753 to MB and TS, 1928609 to AC, 1928817 to EM, 19228771 to LM, 1927277 to DH, and 1928761 to AA as well as by VI EPSCoR (NSF #0814417 and NSF #1946412).
    Keywords: Stony coral tissue loss disease ; Coral disease ; Transmission experiment ; Susceptibility ; Lesion progression rate ; Caribbean ; United States Virgin Islands ; Histopathology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-09-13
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Huntley, N., Brandt, M., Becker, C., Miller, C., Meiling, S., Correa, A., Holstein, D., Muller, E., Mydlarz, L., Smith, T., & Apprill, A. Experimental transmission of Stony Coral Tissue Loss Disease results in differential microbial responses within coral mucus and tissue. ISME Communications, 2(1), (2022): 46, https://doi.org/10.1038/s43705-022-00126-3.
    Description: Stony coral tissue loss disease (SCTLD) is a widespread and deadly disease that affects nearly half of Caribbean coral species. To understand the microbial community response to this disease, we performed a disease transmission experiment on US Virgin Island (USVI) corals, exposing six species of coral with varying susceptibility to SCTLD. The microbial community of the surface mucus and tissue layers were examined separately using a small subunit ribosomal RNA gene-based sequencing approach, and data were analyzed to identify microbial community shifts following disease acquisition, potential causative pathogens, as well as compare microbiota composition to field-based corals from the USVI and Florida outbreaks. While all species displayed similar microbiome composition with disease acquisition, microbiome similarity patterns differed by both species and mucus or tissue microhabitat. Further, disease exposed but not lesioned corals harbored a mucus microbial community similar to those showing disease signs, suggesting that mucus may serve as an early warning detection for the onset of SCTLD. Like other SCTLD studies in Florida, Rhodobacteraceae, Arcobacteraceae, Desulfovibrionaceae, Peptostreptococcaceae, Fusibacter, Marinifilaceae, and Vibrionaceae dominated diseased corals. This study demonstrates the differential response of the mucus and tissue microorganisms to SCTLD and suggests that mucus microorganisms may be diagnostic for early disease exposure.
    Description: This work was funded by an International Coral Reef Society student grant to N.H., National Science Foundation (NSF) VI EPSCoR 0814417 and 1946412 and NSF (Biological Oceanography) award numbers 1928753 to MEB and TBS, 1928609 to AMSC, 1928817 to EMM, 19228771 to LDM, 1927277 to DMH as well as 1928761 and 1938112 to AA, NSF EEID award number 2109622 to MEB, AA, LDM, and AMSC, and a NOAA OAR Cooperative Institutes award to AA (#NA19OAR4320074). Samples were collected under permit #DFW19057U authorized by the Department of Planning and Natural Resources Coastal Zone Management.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liefer, J. D., Richlen, M. L., Smith, T. B., DeBose, J. L., Xu, Y., Anderson, D. M., & Robertson, A. Asynchrony of Gambierdiscus spp. abundance and toxicity in the U.S. Virgin Islands: implications for monitoring and management of Ciguatera. Toxins, 13(6), (2021): 413, https://doi.org/10.3390/toxins13060413.
    Description: Ciguatera poisoning (CP) poses a significant threat to ecosystem services and fishery resources in coastal communities. The CP-causative ciguatoxins (CTXs) are produced by benthic dinoflagellates including Gambierdiscus and Fukuyoa spp., and enter reef food webs via grazing on macroalgal substrates. In this study, we report on a 3-year monthly time series in St. Thomas, US Virgin Islands where Gambierdiscus spp. abundance and Caribbean-CTX toxicity in benthic samples were compared to key environmental factors, including temperature, salinity, nutrients, benthic cover, and physical data. We found that peak Gambierdiscus abundance occurred in summer while CTX-specific toxicity peaked in cooler months (February–May) when the mean water temperatures were approximately 26–28 °C. These trends were most evident at deeper offshore sites where macroalgal cover was highest year-round. Other environmental parameters were not correlated with the CTX variability observed over time. The asynchrony between Gambierdiscus spp. abundance and toxicity reflects potential differences in toxin cell quotas among Gambierdiscus species with concomitant variability in their abundances throughout the year. These results have significant implications for monitoring and management of benthic harmful algal blooms and highlights potential seasonal and highly-localized pulses in reef toxin loads that may be transferred to higher trophic levels.
    Description: This work was funded in part by the National Oceanic and Atmospheric Administration, Ecology and Oceanography of Harmful Algal Blooms Program (ECOHAB publication number 984) through the CiguaHAB project (NA11NOS4780028), and also contributes to CIGUATOX (NA17NOS4780181) granted to coauthors AR, TBS, DMA, and MLR. Additional support was provided by NSF Partnerships in International Research and Education (1743802), and the Greater Caribbean Center for Ciguatera Research (NIH 1P01ES028949-01 and NSF 1841811). Financial support of YX was from the National Natural Science Foundation of China (41976155), the Natural Science Foundation of Guangxi Province (2020GXNSFDA297001).
    Keywords: Gambierdiscus ; ciguatera poisoning ; Dictyota ; ciguatoxin ; Caribbean ; dinoflagellate ; benthic algae ; algal toxin ; harmful algal bloom
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-10
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Veglia, A., Beavers, K., Van Buren, E., Meiling, S., Muller, E., Smith, T., Holstein, D., Apprill, A., Brandt, M., Mydlarz, L., & Correa, A. Alphaflexivirus genomes in stony coral tissue loss disease-affected, disease-exposed, and disease-unexposed coral colonies in the U.S. Virgin Islands. Microbiology Resource Announcements, 11(2), (2022): e01199–e01121, https://doi.org/10.1128/mra.01199-21.
    Description: Stony coral tissue loss disease (SCTLD) is decimating Caribbean corals. Here, through the metatranscriptomic assembly and annotation of two alphaflexivirus-like strains, we provide genomic evidence of filamentous viruses in SCTLD-affected, -exposed, and -unexposed coral colonies. These data will assist in clarifying the roles of viruses in SCTLD.
    Description: This work was supported by the National Science Foundation (Biological Oceanography) award numbers 1928753 to M.E.B. and T.B.S., 1928609 to A.M.S.C., 1928817 to E.M.M., 19228771 to L.D.M., 1927277 to D.M.H., and 1928761 to A.A., as well as by VI EPSCoR (NSF numbers 0814417 and 1946412).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Harmful Algae 66 (2017): 20-28, doi:10.1016/j.hal.2017.04.009.
    Description: Gambierdiscus is a genus of benthic dinoflagellates commonly associated with ciguatera fish poisoning (CFP), which is generally found in tropical or sub-tropical regions around the world. Morphologically similar species within the genus can vary in toxicity; however, species identifications are difficult or sometimes impossible using light microscopy. DNA sequencing of ribosomal RNA genes (rDNA) is thus often used to identify and describe Gambierdiscus species and ribotypes, but the expense and time can be prohibitive for routine culture screening and/or large-scale monitoring programs. This study describes a restriction fragment length polymorphism (RFLP) typing method based on analysis of the large subunit ribosomal RNA gene (rDNA) that can successfully identify at least nine of the described Gambierdiscus species and two Fukuyoa species. The software programs DNAMAN 6.0 and Restriction Enzyme Picker were used to identify a set of restriction enzymes (SpeI, HpyCH4IV, and TaqαI) capable of distinguishing most of the known Gambierdiscus species for which DNA sequences were available. This assay was tested using in silico analysis and cultured isolates, and species identifications of isolates assigned by RFLP typing were confirmed by DNA sequencing. To verify the assay and assess intra-specific heterogeneity in RFLP patterns, identifications of 63 Gambierdiscus isolates comprising ten Gambierdiscus species, one ribotype, and two Fukuyoa species were confirmed using RFLP typing, and this method was subsequently employed in the routine identification of isolates collected from the Caribbean Sea. The RFLP assay presented here reduces the time and cost associated with morphological identification via scanning electron microscopy and/or DNA sequencing, and provides a phylogenetically sensitive method for routine Gambierdiscus species assignment.
    Description: Funding for this study was provided by the U.S. National Oceanic and Atmospheric Administration ECOHAB program (CiguaHAB; Cooperative Agreement NA11NOS4780060, NA11NOS4780028), the China Scholarship Council and Natural Science Foundation of China (No. 41606137, 41606136), and the Guangxi Natural Science Foundation (2015GXNSFCA139003, 2016GXNSFBA380037).
    Keywords: Gambierdiscus ; Ciguatera ; RFLP ; LSU rDNA
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
  • 9
    Publication Date: 2015-10-14
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-07-01
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...