ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Radiological assessment of the many cosmic ion species of widely distributed energies requires the use of theoretical transport models to accurately describe diverse physical processes related to nuclear reactions in spacecraft structures, planetary atmospheres and surfaces, and tissues. Heavy-ion transport models that were designed to characterize shielded radiation fields have been validated through comparison with data from thick-target irradiation experiments at particle accelerators. With the RTD Mission comes a unique opportunity to validate existing radiation transport models and guide the development of tools for shield design. For the first time, transport properties will be measured in free-space to characterize the shielding effectiveness of materials that are likely to be aboard interplanetary space missions. Target materials composed of aluminum, advanced composite spacecraft structure and other shielding materials, helium (a propellant) and tissue equivalent matrices will be evaluated. Large solid state detectors will provide kinetic energy and charge identification for incident heavy-ions and for secondary ions created in the target material. Transport calculations using the HZETRN model suggest that 8 g cm -2 thick targets would be adequate to evaluate the shielding effectiveness during solar minimum activity conditions for a period of 30 days or more.
    Keywords: Aerospace Medicine
    Type: Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) (ISSN 1120-1797); Volume 17 Suppl 1; 131-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The interaction of high-energy space radiation with spacecraft materials generates a host of secondary particles, some, such as neutrons, are more biologically damaging and penetrating than the original primary particles. Before committing astronauts to long term exposure in such high radiation environments, a quantitative understanding of the exposure and estimates of the associated risks are required. Energetic neutrons are traditionally difficult to measure due to their neutral charge. Measurement methods have been limited by mass and weight requirements in space to nuclear emulsion, activation foils, a limited number of Bonner spheres, and TEPCs. Such measurements have had limited success in quantifying the neutron component relative to the charged components. We will show that a combination of computational models and experimental measurements can be used as a quantitative tool to evaluate the radiation environment within the Shuttle, including neutrons. Comparisons with space measurements are made with special emphasis on neutron sensitive and insensitive devices. c2001 Elsevier Science Ltd. All rights reserved.
    Keywords: Aerospace Medicine
    Type: Radiation measurements (ISSN 1350-4487); Volume 33; 3; 355-60
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: In order for humans and electronics to fully and safely operate in the space environment, codes like HZETRN (High Charge and Energy Transport) must be included in any designer's toolbox for design evaluation with respect to radiation damage. Currently, spacecraft designers do not have easy access to accurate radiation codes like HZETRN to evaluate their design for radiation effects on humans and electronics. Today, the World Wide Web is sophisticated enough to support the entire HZETRN code and all of the associated pre and post processing tools. This package is called SIREST (Space Ionizing Radiation Effects and Shielding Tools). There are many advantages to SIREST. The most important advantage is the instant update capability of the web. Another major advantage is the modularity that the web imposes on the code. Right now, the major disadvantage of SIREST will be its modularity inside the designer's system. This mostly comes from the fact that a consistent interface between the designer and the computer system to evaluate the design is incomplete. This, however, is to be solved in the Intelligent Synthesis Environment (ISE) program currently being funded by NASA.
    Keywords: Aerospace Medicine
    Type: Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) (ISSN 1120-1797); Volume 17 Suppl 1; 90-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-05
    Description: The National Council on Radiation Protection and Measurement (NCRP) and the National Academy of Science (NAS) established that the uncertainty in the data and models associated with the high-altitude radiation environment could and should be reduced. In response, the National Aeronautics and Space Administration (NASA) and the U.S. Department of Energy Environmental Measurements Laboratory (EML) created the Atmospheric Ionizing Radiation (AIR) Project under the auspices of the High Speed Research (HSR) Program Office at the Langley Research Center. NASA's HSR Program was developed to address the potential of a second-generation supersonic transport. A critical element focussed on the environmental issues, including the threat to crew and passengers posed by atmospheric radiation. Various international investigators were solicited to contribute instruments to fly on an ER-2 aircraft at altitudes similar to those proposed for the High Speed Civil Transport (HSCT). A list of participating investigators, their institutions, and instruments with quantities measured is presented. The flight series took place at solar minimum (radiation maximum) with northern, southern, and east/west flights. The investigators analyzed their data and presented preliminary results at the AIR Workshop in March, 1998. A review of these results are included.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: We will evaluate the radiation transport properties of epoxy-martian regolith composites. Such composites, which would use both in situ materials and chemicals fabricated from elements found in the martian atmosphere, are candidates for use in habitats on Mars. The principal objective is to evaluate the transmission properties of these materials with respect to the protons and heavy charged particles in the galactic cosmic rays which bombard the martian surface. The secondary objective is to evaluate fabrication methods which could lead to technologies for in situ fabrication. The composites will be prepared by NASA Langley Research Center using simulated martian regolith. Initial evaluation of the radiation shielding properties will be made using transport models developed at NASA-LaRC and the results of these calculations will be used to select the composites with the most favorable radiation transmission properties. These candidates will then be empirically evaluated at particle accelerators which produce beams of protons and heavy charged particles comparable in energy to the radiation at the surface of Mars.
    Keywords: Nonmetallic Materials
    Type: Microgravity Materials Science Conference 2000; 2; 446; NASA/CP-2000-210827/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Extension of the high charge and energy (HZE) transport computer program HZETRN for angular transport of neutrons is considered. For this paper, only light ion transport, He4 and lighter, will be analyzed using a pure solar proton source. The angular transport calculator is the ANISN/PC program which is being controlled by the HZETRN program. The neutron flux values are compared for straight-ahead transport and angular transport in one dimension. The shield material is aluminum and the target material is water. The thickness of these materials is varied; however, only the largest model calculated is reported which is 50 gm/sq cm of aluminum and 100 gm/sq cm of water. The flux from the ANISN/PC calculation is about two orders of magnitude lower than the flux from HZETRN for very low energy neutrons. It is only a magnitude lower for the neutrons in the 10 to 20 MeV range in the aluminum and two orders lower in the water. The major reason for this difference is in the transport modes: straight-ahead versus angular. The angular treatment allows a longer path length than the straight-ahead approximation. Another reason is the different cross section sets used by the ANISN/PC-BUGLE-80 mode and the HZETRN mode. The next step is to investigate further the differences between the two codes and isolate the differences to just the angular versus straight-ahead transport mode. Then, create a better coupling between the angular neutron transport and the charged particle transport.
    Keywords: Atomic and Molecular Physics
    Type: ANL/ED/CP-93185 , CONF-971005-13 , DE97-052982 , Mathematical Methods and Supercomputing In Nuclear Applications; Oct 06, 1997 - Oct 10, 1997; Saratoga Springs, NY; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: Manned space activities have been until present time limited to the near-Earth environment, most of them to low Earth orbit (LEO) scenarios, with only some of the Apollo missions targeted to the Moon. In current times most human exploration and development of space (HEDS) activities are related to the development of the International Space Station (ISS), and therefore take place in the LEO environment. A natural extension of HEDS activities will be going beyond LEO, and reach asteroids, Mars, Jupiter, Saturn, the Kuiper belt and the outskirts of the Solar System. Such long journeys onboard spacecraft outside the protective umbrella of the geomagnetic field will require higher levels of protection from the radiation environment found in the deep space for both astronauts and equipment. So, it is important to have available a tool for radiation shielding which takes into account the radiation environments found all along the interplanetary space and at the different bodies encountered in the Solar System. Moreover, the radiation protection is one of the two NASA highest concerns and priorities. A tool integrating different radiation environments with shielding computation techniques especially tailored for deep space mission scenario is instrumental in view of this exigency. In view of manned missions targeted to Mars, for which radiation exposure is one of the greatest problems and challenges to be tackled, it is of fundamental importance to have available a tool which allows to know which are the particle flux and spectra at any time at any point of the Martian surface. With this goal in mind, a new model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (GCR) has been developed. Solar modulated primary particles rescaled for Mars conditions are transported within the Martian atmosphere, with temporal properties modeled with variable timescales, down to the surface, with altitude and backscattering patterns taken into account. The tool allows analysis for manned Mars landing missions, as well as planetary science studies, e.g. subsurface water and volatile inventory studies. This Mars environmental model is available through the SIREST website, a project of NASA Langley Research Center.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...