ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-04-01
    Description: Seasonal variability of near-inertial horizontal kinetic energy is examined using observations from a series of McLane Moored Profiler moorings located at 39°N, 69°W in the western North Atlantic Ocean in combination with a one-dimensional, depth-integrated kinetic energy model. The time-mean kinetic energy and shear vertical wavenumber spectra of the high-frequency motions at the mooring site are in reasonable agreement with the Garrett–Munk internal wave description. Time series of depth-dependent and depth-integrated near-inertial kinetic energy are calculated from available mooring data after filtering to isolate near-inertial-frequency motions. These data document a pronounced seasonal cycle featuring a wintertime maximum in the depth-integrated near-inertial kinetic energy deriving chiefly from the variability in the upper 500 m of the water column. The seasonal signal in the near-inertial kinetic energy is most prominent for motions with vertical wavelengths greater than 100 m but observable wintertime enhancement is seen down to wavelengths of the order of 10 m. Rotary vertical wavenumber spectra exhibit a dominance of clockwise-with-depth energy, indicative of downward energy propagation and implying a surface energy source. A simple depth-integrated near-inertial kinetic energy model consisting of a wind forcing term and a dissipation term captures the order of magnitude of the observed near-inertial kinetic energy as well as its seasonal cycle.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-01
    Print ISSN: 0967-0645
    Electronic ISSN: 1879-0100
    Topics: Biology , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2010
    Description: Observational and modeling techniques are employed to investigate the thermal and inertial upper ocean response to wind and buoyancy forcing in the North Atlantic Ocean. First, the seasonal kinetic energy variability of near-inertial motions observed with a moored profiler is described. Observed wintertime enhancement and surface intensification of near-inertial kinetic energy support previous work suggesting that near-inertial motions are predominantly driven by surface forcing. The wind energy input into surface ocean near-inertial motions is estimated using the Price-Weller- Pinkel (PWP) one-dimensional mixed layer model. A localized depth-integrated model consisting of a wind forcing term and a dissipation parameterization is developed and shown to have skill capturing the seasonal cycle and order of magnitude of the near-inertial kinetic energy. Focusing in on wintertime storm passage, velocity and density records from drifting profiling floats (EM-APEX) and a meteorological spar buoy/tethered profiler system (ASIS/FILIS) deployed in the Gulf Stream in February 2007 as part of the CLIvar MOde water Dynamics Experiment (CLIMODE) were analyzed. Despite large surface heat loss during cold air outbreaks and the drifting nature of the instruments, changes in the upper ocean heat content were found in a mixed layer heat balance to be controlled primarily by the relative advection of temperature associated with the strong vertical shear of the Gulf Stream. Velocity records from the Gulf Stream exhibited energetic near-inertial oscillations with frequency that was shifted below the local resting inertial frequency. This depression of frequency was linked to the presence of the negative vorticity of the background horizontal current shear, implying the potential for near-inertial wave trapping in the Gulf Stream region through the mechanism described by Kunze and Sanford (1984). Three-dimensional PWP model simulations show evidence of near-inertial wave trapping in the Gulf Stream jet, and are used to quantify the resulting mixing and the effect on the stratification in the Eighteen Degree Water formation region.
    Description: This work was supported by National Science Foundation grants OCE-0241354 and OCE-0424865, as well as the Woods Hole Oceanographic Institution's Ocean and Cli- mate Change Institute. Funding to initiate the McLane Moored Pro ler observations at Line W were provided by grants from the G. Unger Vetlesen Foundation and the Comer Charitable Fund to the Woods Hole Oceanographic Institutions Ocean and Climate Change Institute.
    Keywords: Ocean-atmosphere interaction ; Temperature measurements
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 90 (2009): 1337-1350, doi:10.1175/2009BAMS2706.1.
    Description: A major oceanographic field experiment is described, which is designed to observe, quantify, and understand the creation and dispersal of weakly stratified fluid known as “mode water” in the region of the Gulf Stream. Formed in the wintertime by convection driven by the most intense air–sea fluxes observed anywhere over the globe, the role of mode waters in the general circulation of the subtropical gyre and its biogeo-chemical cycles is also addressed. The experiment is known as the CLIVAR Mode Water Dynamic Experiment (CLIMODE). Here we review the scientific objectives of the experiment and present some preliminary results.
    Description: Physical Oceanography program of NSF
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1035-1049, doi:10.1175/2008JPO3920.1.
    Description: Seasonal variability of near-inertial horizontal kinetic energy is examined using observations from a series of McLane Moored Profiler moorings located at 39°N, 69°W in the western North Atlantic Ocean in combination with a one-dimensional, depth-integrated kinetic energy model. The time-mean kinetic energy and shear vertical wavenumber spectra of the high-frequency motions at the mooring site are in reasonable agreement with the Garrett–Munk internal wave description. Time series of depth-dependent and depth-integrated near-inertial kinetic energy are calculated from available mooring data after filtering to isolate near-inertial-frequency motions. These data document a pronounced seasonal cycle featuring a wintertime maximum in the depth-integrated near-inertial kinetic energy deriving chiefly from the variability in the upper 500 m of the water column. The seasonal signal in the near-inertial kinetic energy is most prominent for motions with vertical wavelengths greater than 100 m but observable wintertime enhancement is seen down to wavelengths of the order of 10 m. Rotary vertical wavenumber spectra exhibit a dominance of clockwise-with-depth energy, indicative of downward energy propagation and implying a surface energy source. A simple depth-integrated near-inertial kinetic energy model consisting of a wind forcing term and a dissipation term captures the order of magnitude of the observed near-inertial kinetic energy as well as its seasonal cycle.
    Description: Funding to initiate the McLane Moored Profiler observations at Line W were provided by grants from the G. Unger Vetlesen Foundation and the Comer Charitable Fund to the Woods Hole Oceanographic Institution’s Ocean and Climate Change Institute. Ongoing moored observations at Line W are supported by the National Science Foundation (NSF Grant OCE-0241354).
    Keywords: Kinetic energy ; Internal waves ; Intraseasonal variability ; North Atlantic Ocean ; In situ observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...