ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-20
    Description: To mitigate temporal aliasing effects in monthly mean global gravity fields from the GRACE and GRACE‐FO satellite tandem missions, both tidal and non‐tidal background models describing high‐frequency mass variability in atmosphere and oceans are needed. To quantify tides in the atmosphere, we exploit the higher spatial (31 km) and temporal (1 hr) resolution provided by the latest atmospheric ECMWF reanalysis, ERA5. The oceanic response to atmospheric tides is subsequently modeled with the general ocean circulation model MPIOM (in a recently revised TP10L40 configuration that includes the feedback of self‐attraction and loading to the momentum equations and has an improved bathymetry around Antarctica) as well as the shallow water model TiME (employing a much higher spatial resolution and more elaborate tidal dissipation than MPIOM). Both ocean models consider jointly the effects of atmospheric pressure variations and surface wind stress. We present the characteristics of 16 waves beating at frequencies in the 1–6 cpd band and find that TiME typically outperforms the corresponding results from MPIOM and also FES2014b as measured from comparisons with tide gauge data. Moreover, we note improvements in GRACE‐FO laser ranging interferometer range‐acceleration pre‐fit residuals when employing the ocean tide solutions from TiME, in particular, for the S1 spectral line with most notable improvements around Australia, India, and the northern part of South America.
    Description: Plain Language Summary: In addition to many rather slow processes such as the melting of glaciers, rapid mass redistribution related to the weather also measurably affect the Earth's gravity field. The ability of monitoring liquid freshwater changes within the Earth system from the satellite gravity missions GRACE (2002–2017) and GRACE‐FO (since 2018) relies on accurate background models of mass variability in atmosphere and oceans for both tidal and non‐tidal processes. Atmospheric tides are primarily excited in the middle atmosphere by solar energy absorption at periods of 24 hr and its overtones. We find additional tidal signatures in the atmosphere excited by periodic deformations of both crust and sea‐surface of the Earth. We thus introduce here a new data set for the atmospheric tides and their corresponding oceanic response that features both more waves and higher accuracy than other background models previously used for the processing of GRACE and GRACE‐FO satellite gravimetry data.
    Description: Key Points: Sixteen relevant tidal lines identified in hourly data from ERA5 atmospheric reanalysis. Dedicated simulations with a high‐resolution global hydrodynamic model to simulate ocean tides with atmospheric influence. New tidal models reduce pre‐fit residuals in GRACE‐FO Laser Ranging Interferometer data.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://pypi.org/project/cdsapi/
    Description: https://mpimet.mpg.de/en/science/models/mpi-esm/mpiom
    Description: https://doi.org/10.5067/graod-1bg06
    Keywords: ddc:526 ; atmospheric tides ; ocean tides ; de‐aliasing ; GRACE‐FO ; ERA5 ; atmospheric forcing
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-08
    Description: Abstract
    Description: The Atmosphere and Ocean De-Aliasing Level-1B (AOD1B) Product provides a priori information about temporal variations in the Earth's gravity field caused by global mass variability in atmosphere and ocean.'It is based on analysis and forecast data of the operational high-resolution global numerical weather prediction (NWP) model from the European Centre for Medium-Range Weather Forecasts (ECMWF) such as ERA5 and ocean bottom pressure from an unconstrained simulation with a global ocean general circulation model that is consistently forced with ECMWF atmospheric data.
    Keywords: Satellite Gravimetry ; De-Aliasing ; Mass Variability ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE ; EARTH SCIENCE SERVICES 〉 MODELS 〉 ATMOSPHERIC GENERAL CIRCULATION MODELS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 OCEAN GENERAL CIRCULATION MODELS (OGCM)/REGIONAL OCEAN MODELS ; Models/Analyses 〉 ECMWFIFS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-10-12
    Description: Abstract
    Description: The Atmosphere and Ocean non-tidal De-aliasing Level-1B (AOD1B) product is widely used in satellite gravimetry to correct for transient effects of atmosphere-ocean mass variability that would otherwise alias into monthly-mean global gravity fields. The most recent release is based on the global ERA5 reanalysis and ECMWF operational data together with simulations from the general ocean circulation model MPIOM consistently forced with fields of the same atmospheric data-set. As background models are inevitably imperfect, residual errors due to aliasing remain. Accounting for the uncertainties of the background model data has, however, proven to be a useful approach to mitigate the impact of residual aliasing. In light of the changes made in the new release of AOD1B, previous uncertainty assessments are deemed too pessimistic and have been revised in the new time-series of true errors: AOe07. One possible way to include the uncertainty information of background models in gravity field estimation or simulation studies is through the computation and application of a variance-covariance matrix that describes the spatio-temporal error characteristics of the background model. The AOe07 variance-covariance-matrix provides this information through (1) a fully populated matrix up to degree and order 40 as well as (2) a diagonal matrix up to degree and order 180.
    Keywords: Satellite Gravimetry ; De-Aliasing ; Mass Variability ; Error Estimation ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; EARTH SCIENCE SERVICES 〉 MODELS 〉 ATMOSPHERIC GENERAL CIRCULATION MODELS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 OCEAN GENERAL CIRCULATION MODELS (OGCM)/REGIONAL OCEAN MODELS ; Models/Analyses 〉 REANALYSIS MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-19
    Description: The Atmosphere and Ocean De‐Aliasing Level‐1B (AOD1B) product provides a priori information about temporal variations in the Earth's gravity field induced by non‐tidal circulation processes in atmosphere and ocean. It is routinely applied as a background model in the Gravity Recovery and Climate Experiment (GRACE)/GRACE Follow‐On (GRACE‐FO) satellite gravimetry data processing. We here present three new datasets in preparation for the upcoming release RL07 of AOD1B, that are based on either the global ERA5 reanalysis or the ECMWF operational data together with simulations from the Max‐Planck‐Institute for Meteorology general circulation model forced consistently with the fields of the same atmospheric data set. The oceanic simulations newly include an updated bathymetry around Antarctica including cavities under the ice shelves, the explicit implementation of the feedback effects of self‐attraction and loading to ocean dynamics as well as a refined harmonic tidal analysis. Comparison to the current release of AOD1B in terms of GRACE‐FO K‐band range‐acceleration pre‐fit residuals, LRI line‐of‐sight gravity differences and band‐pass filtered altimetry data reveals an overall improvement in the representation of the high‐frequency mass variability. Potential benefits of enhancing the temporal resolution remain inconclusive so that the upcoming release 07 will be sampled again every 3 hr.
    Description: Plain Language Summary: Satellite gravimetry missions such as the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow‐On (GRACE‐FO), which play a vital role in the monitoring of the Earth's mass transports, require a priori background information on the high‐frequency mass variations which can not be resolved by the monthly gravity solutions. The Atmosphere and Ocean De‐Aliasing Level‐1B (AOD1B) data product provides the required background information for non‐tidal high‐frequency mass changes in the atmosphere and oceans. However, the accurate representation of these mass variations remains challenging and deficiencies in the background models have a significant impact on the overall gravity field errors. Thus, we here present three new datasets in preparation for an upcoming release of AOD1B (RL07). The datasets improve over previous releases by incorporating the effects of the self attraction and solid earth deformation caused by anomalous water masses (SAL), an improved representation of the bathymetry and atmospheric forcing around Antarctica, making use of the new ERA5 atmospheric reanalysis as well as an updated estimation and subtraction of atmospherically induced tidal signals. We compare the new data to the previous release of AOD1B using microwave‐ and laser‐ranging data from GRACE‐FO as well as Jason‐3 altimetry data and show a global improvement in the representation of high‐frequency mass changes.
    Description: Key Points: Atmospheric mass variability from ECMWF’s latest global reanalysis ERA5 is discussed. Ocean response from Max‐Planck‐Institute for Meteorology Ocean Model includes feedback of self‐attraction and loading. Applicable for Gravity Recovery and Climate Experiment (GRACE), GRACE Follow‐On, and legacy data from SLR satellites.
    Description: Deutsche Forschungsgemeinschaft, DFG http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.5880/GFZ.1.3.2022.003
    Keywords: ddc:526.7 ; AOD1B RL07 ; GRACE ; ERA5 ; self‐attraction and loading ; satellite gravimetry
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...