ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 16 (1960), S. 165-165 
    ISSN: 1420-9071
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Zusammenfassung Es wird eine Methode beschrieben, die es ermöglicht, mit Hilfe eines gefärbten Agarfilms, der durch Löcher in Stanniolpapier gepresst wird, am Amphibien-Ei regelmässige Reihen von Vitalfarbmarken zu setzen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1960-04-01
    Print ISSN: 0014-4754
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: INTRODUCTION: Long-duration missions beyond low Earth orbit introduce new constraints to the space medical system such as the inability to evacuate to Earth, communication delays, and limitations in clinical skillsets. NASA recognizes the need to improve capabilities for autonomous care on such missions. As the medical system is developed, it is important to have an ability to evaluate the trade space of what resources will be most important. The Medical Optimization Network for Space Telemedicine Resources was developed for this reason, and is now a system to gauge the relative importance of medical resources in addressing medical conditions. METHODS: A list of medical conditions of potential concern for an exploration mission was referenced from the Integrated Medical Model, a probabilistic model designed to quantify in-flight medical risk. The diagnostic and treatment modalities required to address best and worst-case scenarios of each medical condition, at the terrestrial standard of care, were entered into a database. This list included tangible assets (e.g. medications) and intangible assets (e.g. clinical skills to perform a procedure). A team of physicians working within the Exploration Medical Capability Element of NASA's Human Research Program ranked each of the items listed according to its criticality. Data was then obtained from the IMM for the probability of occurrence of the medical conditions, including a breakdown of best case and worst case, during a Mars reference mission. The probability of occurrence information and criticality for each resource were taken into account during analytics performed using Tableau software. RESULTS: A database and weighting system to evaluate all the diagnostic and treatment modalities was created by combining the probability of condition occurrence data with the criticalities assigned by the physician team. DISCUSSION: Exploration Medical Capabilities research at NASA is focused on providing a medical system to support crew medical needs in the context of a Mars mission. MONSTR is a novel approach to performing a quantitative risk analysis that will assess the relative value of individual resources needed for the diagnosis and treatment of various medical conditions. It will provide the operational and research communities at NASA with information to support informed decisions regarding areas of research investment, future crew training, and medical supplies manifested as part of the exploration medical system.
    Keywords: Aerospace Medicine; Computer Programming and Software
    Type: JSC-CN-37911 , Annual Scientific Meeting of the Aerospace Medical Association; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Long duration missions beyond low Earth orbit introduce new constraints to the medical system. Factors such as the inability to evacuate to Earth in a timely manner, communication delay, limitations in available medical equipment, and the clinical background of the crew will all have an impact on the assessment and treatment of medical conditions. The Exploration Medical Capability (ExMC) Element of NASAs Human Research Program seeks to improve the way the element derives its mitigation strategies for the risk of "Unacceptable Health and Mission Outcomes Due to Limitation of Inflight Medical Capabilities."
    Keywords: Aerospace Medicine
    Type: JSC-CN-32355 , Aerospace Medical Association (AsMA) Annual Scientific Meeting; May 10, 2015 - May 14, 2015; Lake Buena Vista, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: INTRODUCTION: Long-duration missions beyond low Earth orbit introduce new constraints to the space medical system. Beyond the traditional limitations in mass, power, and volume, consideration must be given to other factors such as the inability to evacuate to Earth, communication delays, and limitations in clinical skillsets. As NASA develops the medical system for an exploration mission, it must have an ability to evaluate the trade space of what resources will be most important. The Medical Optimization Network for Space Telemedicine Resources (MONSTR) was developed over the past year for this reason, and is now a system for managing data pertaining to medical resources and their relative importance when addressing medical conditions. METHODS: The MONSTR web application with a Microsoft SQL database backend was developed and made accessible to Tableau v9.3 for analysis and visualization. The database was initially populated with a list of medical conditions of concern for an exploration mission taken from the Integrated Medical Model (IMM), a probabilistic model designed to quantify in-flight medical risk. A team of physicians working within the Exploration Medical Capability Element of NASA's Human Research Program compiled a list diagnostic and treatment medical resources required to address best- and worst-case scenarios of each medical condition using a terrestrial standard of care and entered this data into the system. This list included both tangible resources (e.g. medical equipment, medications) and intangible resources (e.g. clinical skills required to perform a procedure). The physician team then assigned criticality values to each instance of a resource, representing the importance of that resource to diagnosing or treating its associated condition(s). Medical condition probabilities of occurrence during a Mars mission were pulled from the IMM and imported into the MONSTR database for use within a resource criticality-weighting algorithm. DISCUSSION: The MONSTR tool is a novel approach to assess the relative value of individual resources needed for the diagnosis and treatment of medical conditions. Future work will add resources for prevention and long term care of these conditions. Once data collection is complete, MONSTR will provide the operational and research communities at NASA with information to support informed decisions regarding areas of research investment, future crew training, and medical supplies manifested as part of any exploration medical system.
    Keywords: Aerospace Medicine; Computer Programming and Software
    Type: JSC-CN-37819 , NASA Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2016 - Jan 26, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Integrated Medical Model is a probabilistic simulation model that uses input data on 100 medical conditions to simulate expected medical events, the resources required to treat, and the resulting impact to the mission for specific crew and mission characteristics. The newest development version of IMM, IMM v4.0, adds capabilities that remove some of the conservative assumptions that underlie the current operational version, IMM v3. While IMM v3 provides the framework to simulate whether a medical event occurred, IMMv4 also simulates when the event occurred during a mission timeline. This allows for more accurate estimation of mission time lost and resource utilization. In addition to the mission timeline, IMMv4.0 features two enhancements that address IMM v3 assumptions regarding medical event treatment. Medical events in IMMv3 are assigned the untreated outcome if any resource required to treat the event was unavailable. IMMv4 allows for partially treated outcomes that are proportional to the amount of required resources available, thus removing the dichotomous treatment assumption. An additional capability IMMv4 is to use an alternative medical resource when the primary resource assigned to the condition is depleted, more accurately reflecting the real-world system. The additional capabilities defining IMM v4.0the mission timeline, partial treatment, and alternate drug result in more realistic predicted mission outcomes. The primary model outcomes of IMM v4.0 for the ISS6 mission, including mission time lost, probability of evacuation, and probability of loss of crew life, are be compared to those produced by the current operational version of IMM to showcase enhanced prediction capabilities.
    Keywords: Computer Programming and Software; Statistics and Probability; Aerospace Medicine
    Type: GRC-E-DAA-TN20329 , Space Radiation Investigators'' Workshop and Behavioral Health and Performance Working Group; Jan 12, 2015 - Jan 15, 2015; Galveston, TX; United States|NASA Human Research Program Investigators'' Workshop: Integrated Pathways to Mars; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...