ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
    Publication Date: 2020-09-22
    Description: Morphological interpretation is the standard in diagnosing myelodysplastic syndrome (MDS), but it has limitations, such as varying reliability in pathologic evaluation and lack of integration with genetic data. Somatic events shape morphologic features, but the complexity of morphologic and genetic changes make clear associations challenging. This article interrogates novel clinical subtypes of MDS using a machine learning technique devised to identify patterns of co-occurrence among morphologic features and genomic events. We sequenced 1,079 MDS patients and analyzed bone marrow morphological alterations and other clinical features. A total of 1,929 somatic mutations were identified. Five distinct morphologic profiles with unique clinical characteristics were defined. 77% of higher-risk patients clustered in profile-1. All lower-risk patients clustered into the remaining 4 profiles: profile-2 was characterized by pancytopenia, profile-3 by monocytosis, profile-4 by elevated megakaryocytes, and profile-5 by erythroid dysplasia. These profiles could also separate patients with different prognosis. Lower-risk MDS patients were classified into eight genetic signatures (e.g. signature-A had TET2 mutations, signature-B had both TET2 and SRSF2 mutations and signature-G had SF3B1 mutations) demonstrating association with specific morphologic profiles. Six morphologic profiles/genetic signatures' associations were confirmed in a separate analysis of an independent cohort. Our study demonstrates that non-random or even pathognomonic relationships between morphology and genotype to define clinical features can be identified. This is the first comprehensive implementation of machine learning algorithms to elucidate potential intrinsic interdependencies among genetic lesions, morphologies, and clinical prognostic in attributes of MDS.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-12-02
    Description: Recurrent somatic mutations of CUX1 are described in myeloid neoplasms. CUX1 is located at chromosome 7q22.1; -7/del(7q) involving CUX1 locus are common abnormalities in myelodysplastic syndromes (MDS). Mutations and loss of heterozygosity involving CUX1 have been also described in breast, lung and uterine cancers. Preliminary functional studies, lack of a mutational hotspot and coincidental deletions suggest loss of function/hypomorphic consequences of these molecular defects. CUX1 (p200), contains 4 evolutionarily conserved DNA-binding domains, including 3 CUT repeats and a CUT homeodomain. Functionally, CUX1 regulates many genes involved in DNA replication and chromosome segregation. Cell-based assays have established a role for CUX1 in the control of cell-cycle progression, cell motility, and invasion .The objective of this study is to assess the molecular context and clinical significance of CUX1 mutations and deletions in myeloid neoplasms. We analyzed a subset of 1478 patients [24% lower-risk MDS, 17% higher-risk MDS, 22% primary (p)AML, 14% secondary AML, 14% MDS/myeloproliferative neoplasms (MPN) and 9% MPN] for the presence of CUX1 mutations and deletions. No CUX1 mutations were found in core binding factor AML. We correlated the presence of these lesions with clinical parameters, cytogenetic abnormalities, and molecular features including clonal architecture and associated somatic mutations. Copy number variation and their boundaries were analyzed by Single Nucleotide Polymorphism (SNP) arrays and mutations by multiamplicon deep sequencing utilizing a panel targeting 60 most commonly mutated genes in myeloid neoplasms. In total cohort 4 % of patients had CUX1 mutations and 6% had locus deletions (affecting ch 7q commonly deleted region: 7q22.1) including 90% of del (7q) cases. Expression of CUX1 is significantly lower in AML with -7/del(7q) compared to AML with normal cytogenetics (p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-06
    Description: Next generation sequencing (NGS) and single nucleotide polymorphism arrays (SNP-A) contribute to more precise identification of the spectrum of somatic mutations and karyotypic abnormalities in myeloid neoplasms. The diversity of individual defects and their combinations corresponds to the tremendous clinical heterogeneity. Identification of key driver genes remains a fundamental component to understanding the immense data generated from this technology and the contributions to leukemogenesis. In this project, we evaluated 1200 cases of MDS and AML. Somatic mutations of AT rich interactive domain 2 (ARID2) were found in myelodysplastic syndrome (MDS), myeloproliferative neoplasms (MPN), primary acute myeloid leukemia (pAML) or secondary AML (sAML). All ARID2 mutations occurred in either frameshift (at p.S1489 and p.T1645) or nonsense (at p.E65, p.S154 and p.Q1637) configurations, consistent with loss of function. We have identified a total of 5 mutant cases, all of somatic origin. Study of clonal architecture elucidated that ARID2 mutations were ancestral events in 50% of mutant cases as defined by variant allelic frequencies. By SNP-A, a commonly deleted region on chr.12q was defined by mapping minimally affected lesions in 9 patients with MDS, MPN, sAML or pAML. Haploinsufficient expression of ARID2 was confirmed by expression array analysis in the cases with del(12q), which is compatible to the frequent incidence of heterozygous ARID2 loss-of-function mutations. Del(12q) was more frequent in high-risk phenotype with higher blast counts. In addition, significantly lower expression of ARID2 was also observed in 22 out of 183 patients with diploid 12q. Interestingly, amplification of locus was not found in any of the cases studied by SNP-A. Altogether, such lesions of defective ARID2 were pathogenic in more than 10% of cases with myeloid neoplasms. ARID2 is encoding one of the components of SWI/SNF complex and involved in chromatin remodeling. Therefore, we stipulate that other genes which function together with ARID2 might be affected with somatic mutations or deletions. Further analyses demonstrated the presence of other somatic mutations and deletions affecting SWI/SNF complex, including ACTL6B (N=53) and SMARCD3 (N=66). While SWI/SNF complex lesions were mutually exclusive, concomitant subclonal mutations in such affected cases were commonly observed in RAS pathway genes, including K/NRAS, NF1 and PTPN11. To the contrary, ARID1B, which negatively regulates chromatin remodeling, is predominantly activated in the cohort with similar phenotype. While germline mutations of multiple genes in SWI/SNF complex are reported to be associated with Coffin-Siris syndrome, no family or past history characteristic of this congenital disorder was observed in our cohort. Further clues into the function of ARID2 in myeloid neoplasms came from studying splicing dysfunction in U2AF1 mutant cases. Deep RNA sequencing in the cases with U2AF1 mutations (p.S43F and p.Q157P), showed a consistent loss of ARID2 exon 8 (predominantly noted in sAML). Two types (whole and partial) of exon skipping led to frameshift in the transcript creating a stop codon. Targeted RT-PCR confirmed the transcriptome sequencing results in primary bone marrow samples of the cases with U2AF1 but not in the corresponding wild-type cases. These results are compatible with the genetic finding that spliceosomal mutations were not concomitantly observed in the cases with SWI/SNF complex defects, suggesting misspliced transcript with nonsense decay consequences is enough pathogenic to preclude additional spliceosomal mutations. To validate functional consequences of ARID2 loss, knockdown experiment using ARID2-shRNA transduction in K562 and HL60 cell lines were performed. Knockdown of ARID2 generally demonstrated cell cycle arrest in G2 phase prior to entry into the S-phase, which was partly caused by decreased expression of CDKL3 and CCND3. Hb staining with Benzidine showed impairment of erythroid differentiation in ARID2 knockdown K562, which was confirmed by cytological examination. In sum, multiple mechanisms of defective ARID2 including somatic mutations, haploinsufficiency and phenocopy due to spliceosomal mutations can be involved in ARID2-mediated leukemogenesis. Together with the other components, novel lesions of SWI/SNF complex constitute a group of tumor suppressor genes in myeloid neoplasms. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-06
    Description: Bone marrow (BM) fibrosis is a key pathomorphologic feature of patients (pts) with primary myelofibrosis (PMF) and the fibrotic phases of essential thrombocythemia (post-ET MF) and polycythemia vera (post-PV MF). The degree of BM fibrosis appears to correlate with survival. Indeed worse survival has been associated with increased BM fibrosis. The BM stromal microenvironment is important in the pathogenesis of BM fibrosis. Cellular components (fibroblasts, macrophages, endothelial cells, adipocytes), structural fibrils (collagen, reticulin) and extracellular matrix components are all forming elements of the BM stroma. Increased stromal fibrosis has been linked to abnormalities in the number/ function of megakaryocytes and platelets in hematologic diseases. Several cytokines like Platelet Derived Growth Factor (PDGF) and Transforming Growth Factor-Beta (TGF-b) have been also linked to the pathophysiology of BM fibrosis. PDGF has been shown to increase fibroblast growth in megakaryocytes and platelets although increased PDGF did not correlate with increased production of either reticulin or collagenous fibrosis. Moreover, PMF pts have increased TGF-b levels in platelets, megakaryocytes, and monocytes. Nitric Oxide (NO) is a ubiquitous gas important in physiologic processes particularly vasodilatation. Dysregulation of NO levels has been implicated in pulmonary hypertension (PH), hemoglobinopathies, and cardiovascular diseases. In Peyronie’s disease, a localized fibrosis of the penile tunica albuginea, increased NO production by expression of iNOS decreases collagen deposition by neutralization of profibrotic reactive oxygen species and decreased myofibroblast formation. Aside from its role in maintaining normal vascular tone, NO also plays a role in fibroblast formation and collagen biosynthesis. We previously reported that ruxolitinib, a JAK1/2 inhibitor restores NO levels leading to improvement of PH in MF pts (Tabarroki et al., Leukemia 2014). We now hypothesize that plasma/serum NO level is a key regulator of BM fibrosis in MF and that ruxolitinib treatment (Tx) leads to improvement of BM fibrosis by NO modulation. Using a Sievers 280i NO analyzer we measured the plasma/serum NO level of a large cohort (n=75) of pts with myeloid and myeloproliferative neoplasms (MPN) [MDS, RARS/RCMD=8; MPN, ET=8, PV=8, MF=24, Mastocytosis=7; MDS/MPN, CMML=11, MDS/MPN-U, RARS-T=9]. Healthy subjects (n=10) were used as a control. MPN pts had low NO (nM) levels among the pts studied with the lowest level found in MF pts: MF=30.31±11.8, PV=39.0±16.1, ET=36±20.3, RARS=74.6±41.7 (P=.01), CMML=84.4±89.2 (P=.04), RCMD=163.4±103.8 (P
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-02
    Description: Background: Adult acute myeloid leukemia (AML) patients with high-risk cytogenetics have a significantly worse survival compared to similarly treated intermediate- or favorable-risk patients. Although prior studies suggest better outcome in high-risk AML patients in first complete remission (CR1) who undergo allogeneic hematopoietic cell transplantation (HCT) compared with consolidation chemotherapy, only 40% of patients proceed to HCT. The lack of a matched sibling donor (available in about 33%) should not be a barrier to HCT since alternative donors are available for the large majority of high-risk AMLpatients and recent data suggest outcomes after allogeneic HCT from fully matched unrelated donors are similar to those following matched related donor transplantation. We sought to determine if a prospective organized effort could rapidly identify alternative donors to improve the historical 40% allogeneic HCT rate in high-risk CR1 AML patients ≤ age 61. Secondly, we hypothesized that transplanting significantly more adults with high-risk AML in CR1 would lead to an improved outcome compared with the historical relapse-free survival (RFS) of 22%. Patients and Methods: Adult patients between ages 18 and 60 years with untreated AML were randomized to receive induction therapy with standard cytarabine plus daunorubicin (7+3; n=261), idarubicin with high-dose cytarabine (IA; n=261), or IA with vorinostat (IA+V; n=216). Conventional cytogenetics were obtained at time of enrollment and used to determine risk classification by standard criteria. All patients with high-risk cytogenetics underwent expedited HLA-typing. High-risk patientswere encouraged tobe referred for consultation with a transplant team with the goal of conducting an allogeneic HCT in CR1. Results: Of 738 eligible patients (median age, 49 years; range, 18-60), 159 (22%) had high-risk cytogenetics, of whom 60 (38%), 61 (38%), and 38 (24%) received induction with 7+3, IA, or IA+V, respectively. A total of 107 of the 159 high-risk patients achieved CR/CRi (67%). HCT was performed in 317 of all 738 patients (43%) and 68 (64%) of the high-risk patients received a transplant in CR1 (p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-13
    Description: Background: Minority patient (pt) populations are underrepresented in clinical trials and the proportion of such pts accrued to cancer studies has decreased, specifically among African Americans (AA) (Kwiatkowski et al. Cancer 2013). If minority pt populations have higher rates of comorbidities, restrictive eligibility criteria may contribute to systematic exclusion from studies. To explore the validity of this potential bias within AML pts, we characterized the comorbidity profile and compared outcomes between AA and white pts with AML. Methods: Adult (≥18 years) AML pts who received chemotherapy at Cleveland Clinic from 2003 to 2019 were included. The following characteristics were analyzed: age, sex, self-reported race, insurance, etiology of AML, comorbidities, hepatic/renal function tests, left ventricular ejection fraction (LVEF), and corrected QT interval (QTc). AML risk was categorized according to the 2017 European LeukemiaNet (ELN) risk stratification. Organ dysfunction was defined as ≥ grade 1 per the Common Terminology for Adverse Events. Fisher's exact and Welch's t-tests were performed to compare baseline characteristics. Multivariable logistic and Cox regression analyses were used to identify prognostic factors for response status per International Working Group criteria, and overall survival (OS). Kaplan-Meier method and log-rank test were used to estimate and evaluate OS, respectively. Results: Of 1,040 AML pts included, 939 (90.3%) identified as white and 101 (9.7%) as AA. Age, AML etiology, and AML risk were balanced between the two groups. Insurance coverage was different by race: AAs were more likely than whites to have Medicaid (11.9% vs. 5.1%), and less likely to have private insurance (16.8% vs. 34.6%), P1.5 x ULN vs. normal: HR= 1.69, P=.01). Clinically insignificant creatinine (〉ULN - 1.5 x ULN vs. normal: HR= 0.99, P=.97) and CrCl (84-60 ml/min vs. normal: HR=0.96, P=.69) abnormalities were not independently associated with OS. Subgroup analyses by race revealed similar results for AAs, although, there were no differences in OS based upon bilirubin. With the exception of liver comorbidities (OR= 0.17, P=.01), our analysis failed to identify significant evidence of association between response and comorbidities/organ dysfunction (similar results within the AA subgroup). Although AA were less likely to achieve a CR (AA vs. whites: OR=0.56, P=.05), there was no association between response and creatinine/CrCl abnormalities, regardless of severity. Conclusions: Within this cohort, renal function eligibility criteria may be an important barrier to enrollment, specifically within the AA population. Since there is no association between clinically insignificant renal laboratory values and OS or response, the liberalization of such criterion may be justified. Future trials that broaden the renal function eligibility criterion have the potential to accrue more diverse pt populations, which may reduce recruitment racial disparities and improve the generalizability of the trials' results. Disclosures Hobbs: Amgen: Research Funding; SimulStat Inc.: Consultancy. Mukherjee:Bristol-Myers Squibb: Speakers Bureau; Takeda: Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Projects in Knowledge: Honoraria; Celgene Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Partnership for Health Analytic Research, LLC (PHAR, LLC): Consultancy; McGraw Hill Hematology Oncology Board Review: Other: Editor. Advani:Glycomimetics: Consultancy, Research Funding; Kite Pharmaceuticals: Consultancy; Amgen: Research Funding; Pfizer: Honoraria, Research Funding; Macrogenics: Research Funding; Abbvie: Research Funding. Gerds:CTI Biopharma: Consultancy, Research Funding; Pfizer: Consultancy; Incyte: Consultancy, Research Funding; Roche: Research Funding; Celgene Corporation: Consultancy, Research Funding; Sierra Oncology: Research Funding; Imago Biosciences: Research Funding. Nazha:Daiichi Sankyo: Consultancy; Incyte: Speakers Bureau; Jazz Pharmacutical: Research Funding; Abbvie: Consultancy; Tolero, Karyopharma: Honoraria; Novartis: Speakers Bureau; MEI: Other: Data monitoring Committee. Sekeres:Celgene: Membership on an entity's Board of Directors or advisory committees; Syros: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-11-16
    Description: Abstract 173 One of the most common karyotypic abnormalities identified in myelodysplastic syndromes (MDS) is monosomy 7 (del7) or deletion of the long arm of chromosome 7 (del7q). The presence of del7/del7q carries a poor prognosis in MDS, MDS/myeloproliferative neoplasms (MPN) and acute myeloid leukemia (AML); the impact of these defects appears similar. Recently, a copy-neutral type of loss of heterozygozity (LOH also referred to as a somatic UPD) has been identified on 7q. Microdeletion on 7q corresponding to the EZH2 locus led to identification of inactivating mutations in this gene, though hemizygous EZH2 mutations are only rarely found and do not fully explain del7/7q pathogenesis. We performed a comprehensive analysis of myeloid neoplasms (N=189), using next generation whole exome sequencing technology, including MDS (N=34), MDS/MPN (N=26) or MPN (N=4) and 124 with AML (both primary and secondary). Among them, LOH7, involving del7/del7q were observed in 17% of cases (N=33). To minimize false positives and focus on the most prevalent/relevant somatic events, we implemented a rational bioanalyitic filtering approach, whereby paired DNA (tumor/CD3 lymphocyte) were sequenced and results aligned using Burrows-Wheeler Aligner and variants detected using GATK pipeline (Best Practice Variant Detection from Broad Institute). We focused on searching for del7/7q linked somatic mutational events involved comparisons of mutations in the area of del7q to cases diploid for this locus. We hypothesized that there may be heterozygous mutations of 7q, which could lead to functional haploinsufficiency that is also a result of del7q (haploinsuffcient theory, heterozygous mutations). Conversely, mutations may be either unique to del7q hemizygous inactivation, or shared between 7q diploid and haploid cases. In total, we found alterations in 12 genes located on chromosome 7 (6% of all alterations found). Using filtering strategies we narrowed the focus to “tier 1” mutations to avoid false positives; 11 mutated genes were found in cases with del7/7q and 2 in UPD7q. For example, novel hemzygous (but not heterozygous mutations) of an E3 ubiquitin ligase CUL1 gene were detected only in cases with del7/7q, suggesting that the wild type allele is protective. In cases with diploid 7q, 24 heterozygous alterations were observed (10 genes shared with del7/7q). The previously described EZH2 mutations were seen in heterozygous, homozygous and hemizygous configurations, but were most common in UPD7q (100%), while only 7% of del7/7q cases were positive. Notably, 5/12 mutant genes were located in commonly deleted regions (CDRs) either 7q22, 7q34 or 7q35–36. These CDRs also contain recurrently mutated lesions, including 7q22 (CUX1:n=4; STAG3:n=2), 7q34 (a splicing factor; LUC7L2: n=3) and 7q35–36 (EZH2: n=10). When we investigated the association between haploinsufficiency and heterozygous mutations, among those on del7/7q, cases with wild type forms of corresponding genes showed decreased expression. Similarly, such mutations were occasionally present in diploid configuration; here again the wild type cases showed a decreased expression. These findings suggest that mutated genes located in CDRs can be pathogenic due to both haploinsufficiency of WT genes and heterozygous mutations. EZH2 is a good example of such a gene. We also searched accessory genetic events observed on other chromosomes along with del7/7q and UPD7. By SNP-A, there were clear differences among 3 LOH7 groups, in which del7 was more associated with accessory chromosomal defects than cases with UPD7q or del7. Similarly, mutational patterns were specific to each LOH cohort. For example, while well known frequently mutated genes, such as U2AF1, TET2 and TP53, were commonly found in all 3 LOH7 groups, some specific genes, including the CSMD family, were uniquely observed in monosomy 7, not in del7q or UPD7. Similarly, LOH7q was associated with somatic mutations in SETBP1 and RUNX1. In conclusion, we detected several candidate genes that could be associated with del7/7q and UPD7. Some mutations were heterozygous in cases with diploid 7q and correlated with CDRs on del7/7q without mutation. Certain mutations are specifically observed with del7, while others are commonly observed in all categories of LOH7, including EZH2. Moreover, some genes outside of the chromosome 7 were coincidently mutated with LOH7. Disclosures: Makishima: Scott Hamilton CARES Initiative: Research Funding. Maciejewski:NIH: Research Funding; Aplastic Anemia&MDS International Foundation: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-11-13
    Description: TET2 is one of the most commonly mutated genes in myeloid neoplasia. Somatic TET2 mutations (TET2MT) cause complete or partial loss of enzymatic activity. TET2 (along with TET1/3) are Fe2+ and αKG-dependent DNA-dioxygenases that catalyze the oxidation of 5mC→5hmC→5fC→5caC. Ultimately, 5hmC generated by TET2-dioxygenase passively prevents maintenance methylation due to DNA methyltransferase's inability to recognize 5hmC. Alternatively, demethylation may also be a result of base excision repair of fC and caC. TET2MT can serve as therapeutic targets because they are often initiating lesions and present in a large fraction of patients. In this study, a comprehensive analysis of the configurations of TET2MT in myeloid neoplasia including MDS (n=1809) and AML (n=808), showed a remarkable exclusivity with 2-HG producing neomorphic IDH1/2MT (Fig.A). TET2 expression in 97 healthy and 909 MDS/MPN or AML patients from two independent studies showed that IDH1/2MT cases have significantly higher TET2 expression and were also mutually exclusive in cases with lower TET2 expression. Doxycycline inducible expression of IDH1MT led to profound growth inhibition of both a natural TET2MT cell line SIG-M5 and engineered TET2-/- K562, while the effect to parental K562 was mild (Fig.B-E). These observations suggest that mutual exclusivity of TET2MT and IDH1/2MT is due to synthetic lethality of TET2MT cell caused by 2-HG production, rather than redundancy of the consequences of IDH1/2MT and TET2MT. In TET2MT cell 2-HG further inhibit the residual TET-activity (TET1/3) and may cause synthetic lethality to cells with affected TET2 function. SIG-M5 cells expresses significant amount of TET3 while negligible levels of TET1. The reliance on relative compensation through residual TET3 activity has been confirmed in cells by inducible TET3 knockdown. We hypothesized that transient suppression of the residual DNA dioxygenase activity with inhibitors may selectively eliminate TET2-deficient clones. The known TET inhibitors 2-HG, N-oxalylglycine (NOG) and dimethyl methyl fumarate (DMF) lack specificity, pharmacologic properties and potency. Based on the results of in silico docking simulations, we designed and synthesized 16 aKG derivatives. Among them, TETi76 showed best inhibition effect in both TET activity and cell growth of TET2 low expressing cell. TETi76 binds to the α-KG co-factor site of TET2 that principally involves H1801, H1381 and S1898. These amino acids are conserved in all three TET enzymes. To test the in vitro efficacy and specificity of TETi, we used several human myeloid cell lines that harbor loss of function TET2 mutations or constitutively express low TET2 levels as well as bone marrow derived from Tet2+/+, Tet2+/- and Tet2-/- mice (Fig.F-G). Results showed that cells with low 5hmC level were more sensitive to TETi76 treatment. Specificity of TETi76 was further confirmed by RNAseq analyses of TETi76 treated K562, TET2-/- K562 and parental control cells. Moreover, TETi treatment did not appear to affect the function of α-KG-dependent histone dioxygenases. Mechanistically, treatment of SIG-M5 cells with TETi76 induced early and late stages of apoptotic cell death, a finding further confirmed by PARP1 and caspase-3 cleavage. RNAseq analyses of SIGM5 cells after treatment with TETi demonstrated a significant down-regulation of genes involved in transcription and peptide elongation, consistent with the consequences of TET inhibition. Interestingly, we also observed significant up-modulation of oxidative stress response pathway genes consistent with the inhibition of dioxygenases. In particular, TETi76 treatment induces 8-fold increase of oxidative stress sensor NQO1 a NRF2 target gene. To further probe the effects of TETi76 on TET2 deficient cells, Tet2MT/Tet2WT BM cells were co-cultured at fixed ratios to mimic the evolving Tet2MT clones. TETi76 effectively eliminated otherwise dominating Tet2MT cells (Fig.H). To determine the in vivo effects of TETi e.g., on elimination of Tet2MT clones, we performed bone marrow competitive reconstitution assays in PEP mice. TETi treatment selectively restricted the proliferative advantage of Tet2MT HSC compared to vehicle control where, as expected, TET2 mutant clones took over the WT cells. In clinical applications, TET inhibitors may constitute a new class of agents to be used in a targeted fashion in TET2 mutant neoplasia. Figure. Disclosures Meggendorfer: MLL Munich Leukemia Laboratory: Employment. Abazeed:Bayer AG: Honoraria, Other: Travel Support, Research Funding; Siemens: Research Funding. Sekeres:Millenium: Membership on an entity's Board of Directors or advisory committees; Syros: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Maciejewski:Novartis: Consultancy; Alexion: Consultancy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...