ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-08-25
    Description: This paper considers the lithospheric structure and evolution of the wider Barents–Kara Sea region based on the compilation and integration of geophysical and geological data. Regional transects are constructed at both crustal and lithospheric scales based on the available data and a regional three-dimensional model. The transects, which extend onshore and into the deep oceanic basins, are used to link deep and shallow structures and processes, as well as to link offshore and onshore areas. The study area has been affected by numerous orogenic events in the Precambrian–Cambrian (Timanian), Silurian–Devonian (Caledonian), latest Devonian–earliest Carboniferous (Ellesmerian–Svalbardian), Carboniferous–Permian (Uralian), Late Triassic (Taimyr, Pai Khoi and Novaya Zemlya) and Palaeogene (Spitsbergen–Eurekan). It has also been affected by at least three episodes of regional-scale magmatism, the so-called large igneous provinces: the Siberian Traps (Permian–Triassic transition), the High Arctic Large Igneous Province (Early Cretaceous) and the North Atlantic (Paleocene–Eocene transition). Additional magmatic events occurred in parts of the study area in Devonian and Late Cretaceous times. Within this geological framework, we integrate basin development with regional tectonic events and summarize the stages in basin evolution. We further discuss the timing, causes and implications of basin evolution. Fault activity is related to regional stress regimes and the reactivation of pre-existing basement structures. Regional uplift/subsidence events are discussed in a source-to-sink context and are related to their regional tectonic and palaeogeographical settings.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-01
    Description: Previous thermomechanical modeling studies indicated that variations in the temperature and strength of the crystalline crust might be responsible for the juxtaposition of domains with thin-skinned and thick-skinned crustal deformation along strike the foreland of the central Andes. However, there is no evidence supporting this hypothesis from data-integrative models. We aim to derive the density structure of the lithosphere by means of integrated 3-D density modeling, in order to provide a new basis for discussions of compositional variations within the crust and for future thermal and rheological modeling studies. Therefore, we utilize available geological and geophysical data to obtain a structural and density model of the uppermost 200 km of the Earth. The derived model is consistent with the observed Bouguer gravity field. Our results indicate that the crystalline crust in northern Argentina can be represented by a lighter upper crust (2,800 kg/m 3 ) and a denser lower crust (3,100 kg/m 3 ). We find new evidence for high bulk crustal densities 〉3,000 kg/m 3 in the northern Pampia terrane. These could originate from subducted Puncoviscana wackes or pelites that ponded to the base of the crystalline crust in the late Proterozoic or indicate increasing bulk content of mafic material. The precise composition of the northern foreland crust, whether mafic or felsic, has significant implications for further thermomechanical models and the rheological behavior of the lithosphere. A detailed sensitivity analysis of the input parameters indicates that the model results are robust with respect to the given uncertainties of the input data. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-01
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-09-01
    Description: The Glueckstadt Graben is a prominent structure of the Central European Basin System, where the sedimentary patterns are extensively affected by Permian salt movements. The relations of the sedimentary patterns to salt structures have been analyzed through present-day distributions of sediments. In addition, a three-dimensional backward modelling approach has been applied to determine the original salt distribution in response to the unloading due to sequential backstripping of the stratigraphic layers. The results of the modelling reveal the thickness distribution of the Permian salt for 5 time intervals from the end of the Triassic to present day. Spatial agreement has been found between the development of the depleted zone of the Permian salt through time and the observed distribution of the maximum subsidence for the different stratigraphic units above the salt. The sedimentation centres for each time interval are always located above the zone of reduced or depleted Permian salt. In the central part of the Glueckstadt Graben, the depletion occurred already in the Triassic and perfectly correlates with the thickest Triassic. During the Jurassic, Cretaceous and Tertiary, the areas of depleted Permian salt shifted towards the basin flanks, and the same occurred with the centres of maximum sediment deposition. Thus, the results of the modelling strongly support the conclusion that salt withdrawal has played a major role during the Meso-Cenozoic evolution of the Glueckstadt Graben and that the progressive depletion of the Permian salt layer, from the central part towards the margins, created the large part of the accommodation space for sedimentation in addition to tectonic subsidence.Furthermore, our study has several important implications for salt behaviour in different tectonic settings. In general, the results of modelling indicate a good correlation between the main phases of salt movements and tectonic events in the area under consideration. During the Triassic, the first stage of diapirism in the Glueckstadt Graben occurred within the central part of the basin. Regional extension may have triggered reactive diapirism and caused the formation of the deep primary rim synclines. Once the salt structures had reached the critical size, buoyancy forces supported their continued growth until the Jurassic when extension-induced regional stresses once more affected the Glueckstadt Graben. The results of the modelling indicate very little salt activity during the late Early Cretaceous-early Late Cretaceous when the area of the Glueckstadt Graben was tectonically silent. Therefore, our study supports the concept of tectonically induced salt movements which can be interrupted during the absence of tectonic forces. Salt movements were reactivated in the marginal troughs by compressional forces during the latest Late Cretaceous-Early Cenozoic. Paleogene-Neogene salt withdrawal led to the growth of N-S oriented salt structures mainly at the margins of the basin. This phase of salt tectonics correlates temporally with almost W-E extension. This indicates a renewed change in tectonic regime after Late Cretaceous-Early Cenozoic compression.
    Print ISSN: 0016-7746
    Electronic ISSN: 1573-9708
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-12-01
    Description: A selection of reflection-seismic lines from the southern part of the Central European Basin System and its southern margin were used to establish the spectrum of extensional and compressional deformation structures and to calibrate the timing of these events. The lines are arranged in a N-S and an E-W transect running across the Pompeckj Block and the Lower Saxony Basin in Northern Germany. The structural record provided by the seismic data points to an interplay between far-field horizontal stresses and vertical movements of the basin floor, the latter only weakly correlated with the development of seismic-scale tectonic structures. A detailed seismo-stratigraphic analysis indicates that Late Triassic-Jurassic extension has been the principal control on the structure of the E-W profile, whereas the N-S profile is dominated by compressional structures associated with Late Cretaceous inversion. Overprint effects of extension and inversion tectonics can be classified among a few distinct tectonic events accompanied by movements of the Upper Permian salt: firstly, an episode of subsidence and diapiric rise in the Keuper; secondly, a clear Jurassic-to-Early Cretaceous extension recorded by normal faulting and differential subsidence. The latter was interrupted by a major episode of Late Jurassic uplift. Thirdly, a Late Cretaceous-Early Paleogene basin inversion was associated with approximately N-S compression; and fourthly, recurring extension during the Cenozoic associated with diapiric rise and collapse. The Mesozoic extension is expressed in a number of normal faults that were most active during the Early Cretaceous localised subsidence within the Lower Saxony Basin. The deformation associated with the Late Cretaceous inversion was partly decoupled along the salt. The compressional deformation at the southern margin of the basin was thick-skinned in style, characterized by folding and faulting of the Mesozoic sedimentary fill and pre-Zechstein strata. Further north, towards the centre of the basin, folding and reverse faulting were mostly concentrated above the salt. The tectonic evolution of the investigated area suggests the presence of a zone of crustal weakness along the SW margin of the Central European Basin System which allowed strain localization in response to a favourable oriented stress field.
    Print ISSN: 0016-7746
    Electronic ISSN: 1573-9708
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-10
    Description: The Barents Sea and Kara Sea region as part of the European Arctic shelf, is geologically situated between the Proterozoic East-European Craton in the south and early Cenozoic passive margins in the north and the west. Proven and inferred hydrocarbon resources encouraged numerous industrial and academic studies in the last decades which brought along a wide spectrum of geological and geophysical data. By evaluating all available interpreted seismic refraction and reflection data, geological maps and previously published 3-D-models, we were able to develop a new lithosphere-scale 3-D-structural model for the greater Barents Sea and Kara Sea region. The sedimentary part of the model resolves four major megasequence boundaries (earliest Eocene, mid-Cretaceous, mid-Jurassic and mid-Permian). Downwards, the 3-D-structural model is complemented by the top crystalline crust, the Moho and a newly calculated lithosphere-asthenosphere boundary (LAB). The thickness distribution of the main megasequences delineates five major subdomains differentiating the region (the northern Kara Sea, the southern Kara Sea, the eastern Barents Sea, the western Barents Sea and the oceanic domain comprising the Norwegian-Greenland Sea and the Eurasia Basin). The vertical resolution of five sedimentary megasequences allows comparing for the first time the subsidence history of these domains directly. Relating the sedimentary structures with the deeper crustal/lithospheric configuration sheds some light on possible causative basin forming mechanisms that we discuss. The newly calculated LAB deepens from the typically shallow oceanic domain in three major steps beneath the Barents and Kara shelves towards the West-Siberian Basin in the east. Thereby, we relate the shallow continental LAB and slow/hot mantle beneath the southwestern Barents Sea with the formation of deep Paleozoic/Mesozoic rift basins. Thinnest continental lithosphere is observed beneath Svalbard and the NW Barents Sea where no Mesozoic/early Cenozoic rifting has occurred but strongest Cenozoic uplift and volcanism since Miocene times. The East Barents Sea Basin is underlain by a LAB at moderate depths and a high-density anomaly in the lithospheric mantle which follows the basin geometry and a domain where the least amount of late Cenozoic uplift/erosion is observed. Strikingly, this high-density anomaly is not present beneath the adjacent southern Kara Sea. Both basins share a strong Mesozoic subsidence phase whereby the main subsidence phase is younger in the South Kara Sea Basin.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-02-12
    Description: We introduce a regional 3-D structural model of the Barents Sea and Kara Sea region which is the first to combine information on the sediments and the crystalline crust as well as the configuration of the lithospheric mantle. Therefore, we have integrated all available geological and geophysical data, including interpreted seismic refraction and reflection data, seismological data, geological maps and previously published 3-D models into one consistent model. This model resolves four major megasequence boundaries (earliest Eocene, mid-Cretaceous, mid-Jurassic and mid-Permian) the top crystalline crust, the Moho and a newly calculated lithosphere–asthenosphere boundary (LAB). The thickness distributions of the corresponding main megasequences delineate five major subdomains (the northern Kara Sea, the southern Kara Sea, the eastern Barents Sea, the western Barents Sea and the oceanic domain comprising the Norwegian–Greenland Sea and the Eurasia Basin). Relating the subsidence histories of these subdomains to the structure of the deeper crust and lithosphere sheds new light on possible causative basin forming mechanisms that we discuss. The depth configuration of the newly calculated LAB and the seismic velocity configuration of the upper mantle correlate with the younger history of this region. The western Barents Sea is underlain by a thinned lithosphere (80 km) resulting from multiple Phanerozoic rifting phases and/or the opening of the NE Atlantic from Paleocene/Eocene times on. Notably, the northwestern Barents Sea and Svalbard are underlain by thinnest continental lithosphere (60 km) and a low-velocity/hot upper mantle that correlates spatially with a region where late Cenozoic uplift was strongest. As opposed to this, the eastern Barents Sea is underlain by a thicker lithosphere (~ 110–150 km) and a high-velocity/density anomaly in the lithospheric mantle. This anomaly, in turn, correlates with an area where only little late Cenozoic uplift/erosion was observed.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-07-01
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-09-01
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-01-01
    Print ISSN: 0040-1951
    Electronic ISSN: 1879-3266
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...