ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-03-04
    Description: The homodimeric mammalian fatty acid synthase is one of the most complex cellular multienzymes, in that each 270-kilodalton polypeptide chain carries all seven functional domains required for fatty acid synthesis. We have calculated a 4.5 angstrom-resolution x-ray crystallographic map of porcine fatty acid synthase, highly homologous to the human multienzyme, and placed homologous template structures of all individual catalytic domains responsible for the cyclic elongation of fatty acid chains into the electron density. The positioning of domains reveals the complex architecture of the multienzyme forming an intertwined dimer with two lateral semicircular reaction chambers, each containing a full set of catalytic domains required for fatty acid elongation. Large distances between active sites and conformational differences between the reaction chambers demonstrate that mobility of the acyl carrier protein and general flexibility of the multienzyme must accompany handover of the reaction intermediates during the reaction cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maier, Timm -- Jenni, Simon -- Ban, Nenad -- New York, N.Y. -- Science. 2006 Mar 3;311(5765):1258-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology (ETH Zurich), 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16513975" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Carrier Protein/chemistry/metabolism ; Animals ; Binding Sites ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Fatty Acid Synthases/*chemistry/isolation & purification/metabolism ; Fatty Acids/biosynthesis ; Mammary Glands, Animal/enzymology ; Models, Molecular ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-04-14
    Description: We report crystal structures of the 2.6-megadalton alpha6beta6 heterododecameric fatty acid synthase from Thermomyces lanuginosus at 3.1 angstrom resolution. The alpha and beta polypeptide chains form the six catalytic domains required for fatty acid synthesis and numerous expansion segments responsible for extensive intersubunit connections. Detailed views of all active sites provide insights into substrate specificities and catalytic mechanisms and reveal their unique characteristics, which are due to the integration into the multienzyme. The mode of acyl carrier protein attachment in the reaction chamber, together with the spatial distribution of active sites, suggests that iterative substrate shuttling is achieved by a relatively restricted circular motion of the carrier domain in the multifunctional enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jenni, Simon -- Leibundgut, Marc -- Boehringer, Daniel -- Frick, Christian -- Mikolasek, Bohdan -- Ban, Nenad -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):254-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431175" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism ; Acetyltransferases/metabolism ; Acyl Carrier Protein/chemistry/metabolism/ultrastructure ; Acyltransferases/metabolism ; Amino Acid Sequence ; Ascomycota/*enzymology ; Catalytic Domain ; Crystallography, X-Ray ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism ; Fatty Acid Synthases/*chemistry/metabolism ; Fungal Proteins/*chemistry/metabolism ; Hydro-Lyases/metabolism ; Models, Molecular ; Molecular Sequence Data ; NADP/chemistry ; Protein Conformation ; Protein Subunits/chemistry ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-04-14
    Description: In the multifunctional fungal fatty acid synthase (FAS), the acyl carrier protein (ACP) domain shuttles reaction intermediates covalently attached to its prosthetic phosphopantetheine group between the different enzymatic centers of the reaction cycle. Here, we report the structure of the Saccharomyces cerevisiae FAS determined at 3.1 angstrom resolution with its ACP stalled at the active site of ketoacyl synthase. The ACP contacts the base of the reaction chamber through conserved, charge-complementary surfaces, which optimally position the ACP toward the catalytic cleft of ketoacyl synthase. The conformation of the prosthetic group suggests a switchblade mechanism for acyl chain delivery to the active site of the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leibundgut, Marc -- Jenni, Simon -- Frick, Christian -- Ban, Nenad -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):288-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431182" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Carrier Protein/*chemistry/metabolism ; Acyltransferases/metabolism ; Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Fatty Acid Synthases/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-09-20
    Description: Dynamin-related proteins (DRPs) are multi-domain GTPases that function via oligomerization and GTP-dependent conformational changes to play central roles in regulating membrane structure across phylogenetic kingdoms. How DRPs harness self-assembly and GTP-dependent conformational changes to remodel membranes is not understood. Here we present the crystal structure of an assembly-deficient mammalian endocytic DRP, dynamin 1, lacking the proline-rich domain, in its nucleotide-free state. The dynamin 1 monomer is an extended structure with the GTPase domain and bundle signalling element positioned on top of a long helical stalk with the pleckstrin homology domain flexibly attached on its opposing end. Dynamin 1 dimer and higher order dimer multimers form via interfaces located in the stalk. Analysis of these interfaces provides insight into DRP family member specificity and regulation and provides a framework for understanding the biogenesis of higher order DRP structures and the mechanism of DRP-mediated membrane scission events.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075756/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075756/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ford, Marijn G J -- Jenni, Simon -- Nunnari, Jodi -- DRG-2004-09/Howard Hughes Medical Institute/ -- R01 GM062942/GM/NIGMS NIH HHS/ -- R01 GM097432/GM/NIGMS NIH HHS/ -- R01GM062942S1/GM/NIGMS NIH HHS/ -- R01GM097432/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Sep 18;477(7366):561-6. doi: 10.1038/nature10441.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21927001" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Crystallization ; Crystallography, X-Ray ; Dynamin I/*chemistry/genetics/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Nucleotides ; Protein Binding ; Protein Conformation ; Protein Multimerization/genetics ; Protein Structure, Tertiary/genetics ; Rats
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-03-04
    Description: All steps of fatty acid synthesis in fungi are catalyzed by the fatty acid synthase, which forms a 2.6-megadalton alpha6beta6 complex. We have determined the molecular architecture of this multienzyme by fitting the structures of homologous enzymes that catalyze the individual steps of the reaction pathway into a 5 angstrom x-ray crystallographic electron density map. The huge assembly contains two separated reaction chambers, each equipped with three sets of active sites separated by distances up to approximately 130 angstroms, across which acyl carrier protein shuttles substrates during the reaction cycle. Regions of the electron density arising from well-defined structural features outside the catalytic domains separate the two reaction chambers and serve as a matrix in which domains carrying the various active sites are embedded. The structure rationalizes the compartmentalization of fatty acid synthesis, and the spatial arrangement of the active sites has specific implications for our understanding of the reaction cycle mechanism and of the architecture of multienzymes in general.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jenni, Simon -- Leibundgut, Marc -- Maier, Timm -- Ban, Nenad -- New York, N.Y. -- Science. 2006 Mar 3;311(5765):1263-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology (ETH Zurich), 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16513976" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Carrier Protein/chemistry/metabolism ; Ascomycota/*enzymology ; Binding Sites ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Fatty Acid Synthases/*chemistry/isolation & purification/metabolism ; Fatty Acids/biosynthesis ; Models, Molecular ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-21
    Description: Quantifying abundance and distribution of plant species can be difficult because data are often inflated with zero values due to rarity or absence from many ecosystems. Terrestrial fruticose lichens ( Cladonia and Cetraria spp.) occupy a narrow ecological niche and have been linked to the diets of declining caribou and reindeer populations ( Rangifer tarandus ) across their global distribution, and conditions related to their abundance and distribution are not well understood. We attempted to measure effects related to the occupancy and abundance of terrestrial fruticose lichens by sampling and simultaneously modeling two discrete conditions: absence and abundance. We sampled the proportion cover of terrestrial lichens at 438 vegetation plots, including 98 plots having zero lichens. A zero-inflated beta regression model was employed to simultaneously estimate both the absence and the proportion cover of terrestrial fruticose lichens using fine resolution satellite imagery and light detection and ranging (LiDAR) derived covariates. The probability of lichen absence significantly increased with shallower groundwater, taller vegetation, and increased Sphagnum moss cover. Vegetation productivity, Sphagnum moss cover, and seasonal changes in photosynthetic capacity were negatively related to the abundances of terrestrial lichens. Inflated beta regression reliably estimated the abundance of terrestrial lichens ( R 2  = .74) which was interpolated on a map at fine resolution across a caribou range to support ecological conservation and reclamation. Results demonstrate that sampling for and simultaneously estimating both occupancy and abundance offer a powerful approach to improve statistical estimation and expand ecological inference in an applied setting. Learnings are broadly applicable to studying species that are rare, occupy narrow niches, or where the response variable is a proportion value containing zero or one, which is typical of vegetation cover data. Sampling for and simultaneously estimating both plant absence and plant abundance improve statistical estimation and expand inference in applied ecology.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2014-08-06
    Description: The interaction of the eukaryotic translation initiation factor eIF4E with the initiation factor eIF4G recruits the 40S ribosomal particle to the 5′ end of mRNAs, facilitates scanning to the AUG start codon, and is crucial for eukaryotic translation of nearly all genes. Efficient recruitment of the 40S particle is particularly...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-05-04
    Description: Kinetochores connect mitotic-spindle microtubules with chromosomes, allowing microtubule depolymerization to pull chromosomes apart during anaphase while resisting detachment as the microtubule shortens. The heterodecameric DASH/Dam1 complex (DASH/Dam1c), an essential component of yeast kinetochores, assembles into a microtubule-encircling ring. The ring associates with rodlike Ndc80 complexes to organize the kinetochore-microtubule interface. We report the cryo–electron microscopy structure (at ~4.5-angstrom resolution) of a DASH/Dam1c ring and a molecular model of its ordered components, validated by evolutionary direct-coupling analysis. Integrating this structure with that of the Ndc80 complex and with published interaction data yields a molecular picture of kinetochore-microtubule attachment, including how flexible, C-terminal extensions of DASH/Dam1c subunits project and contact widely separated sites on the Ndc80 complex rod and how phosphorylation at previously identified sites might regulate kinetochore assembly.
    Keywords: Biochemistry, Cell Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-10-01
    Print ISSN: 0013-7952
    Electronic ISSN: 1872-6917
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...