ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two -fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z -2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z -1 prototype and to suit testing techniques will be presented.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27258 , 43rd International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Book is already performed annually. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Research Plan are presented including description of ongoing and planned research activities in the areas of: Benchmarking; Anthropometry and Suit Fit; Sensors; Human-Suit Modeling; Suit Trauma Monitoring and Countermeasures; EVA Workload and Duration Effects; Decompression Sickness Risk Mitigation; Deconditioned EVA Performance; and Exploration EVA Concept of Operations.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-34797 , International Conference on Environmental Systems; Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: What is a space suit? Space suit testing; How and why we test them; hardware design vs. user functionality; Data collection lessons learned; Challenges of objective and subjective data; Personal experience from 2 perspectives: test director and test subject
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN55445 , Car HMi; Apr 22, 2018 - Apr 24, 2018; Detroit, MI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This paper presents both near-term and long-term NASA Advanced Extra-vehicular Activity (EVA) Pressure Garment development efforts. The near-term plan discusses the development of pressure garment components for the first design iteration of the International Space Station exploration space suit demonstration configuration, termed the xEMU Demo. The xEMU Demo effort is targeting a 2023-2025 flight demonstration timeframe. The Fiscal Year 2018 (FY18) tasks focus on either the initiation or maturation of component design, depending on the state of development of the components, and the assembly of a suit configuration, termed Z-2.5, that will be used to evaluate changes to the upper torso geometry in a Neutral Buoyancy Laboratory (NBL) test series. The geometry changes, which are being driven by the need to reduce the front-to-back dimension of the advanced extravehicular mobility unit, diverge from a proven shape, such as that of the Mark III Space Suit Technology Demonstrator. The 2018 efforts culminate in the Z-2.5 NBL test. The lessons learned from the Z-2.5 NBL test will inform the xEMU Demo design as the effort moves toward design verification testing and preliminary and critical design reviews. The long-term development plan looks to surface exploration and operations. Technology and knowledge gaps exist between the xEMU Demo configuration; a lunar surface capability, xEMU; and Mars surface suit, mEMU. The development plan takes into account both the priority and the anticipated development duration for each particular technology. The long-term development plan will be updated as risks are mitigated and gaps are closed, but its overarching structure will remain intact.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN58721 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: Since the 1950s, mechanical counter-pressure (MCP) has been investigated as a possible alternative architecture to traditional extra-vehicular activity (EVA) suits. While traditional gas-pressurized EVA suits provide physiological protection against the ambient vacuum environment by means of pressurized oxygen to at least 3.1 psid, MCP provides protection by direct application of pressure on the skin by a fabric. In reviewing the concept, MCP offers distinct potential advantages to traditional EVA suits: lower mass, reduced consumables, increased mobility, increased comfort, less complexity, and improved failure modes. In addition, as basic feasibility was established in the 1960s with the successful testing of the Space Activity Suit, MCP seems poised to inevitably supplant traditional EVA architectures with a modest degree of concentrated development. However, as they say, "The devil is in the details". This paper serves as a comprehensive summary of the technical work that has been completed related to MCP from 1960 to 2019, the technical gaps that need to be closed to facilitate a flight-capable design, and outlines an overall development strategy that NASA feels would best address these gaps moving forward.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN62780 , International Conference on Environmental Systems (ICES) 2019; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-27
    Description: Since the 1950s, mechanical counter-pressure (MCP) has been investigated as a possible alternative design concept to traditional extra-vehicular activity (EVA) space suits. While traditional gas-pressurized EVA suits provide physiological protection against the ambient vacuum by means of pressurized oxygen to at least 3.1 pounds per square inch absolute (160 millimeters of mercury), MCP provides protection by direct application of pressure on the skin by a fabric. In reviewing the concept, MCP offers distinct potential advantages to traditional EVA suits: lower mass, reduced consumables, increased mobility, increased comfort, less complexity, and improved failure modes. In the mid 1960s to early 1970s, Dr. Paul Webb of Webb Associates developed and tested such a suit under funding from NASA Langley Research Center. This "Space Activity Suit" (SAS) was improved many times while testing in the laboratory and an altitude chamber to as low as 0.3 pounds per square inch absolute (15 millimeters of mercury). This testing, and the reports by Webb documenting it, are often presented as evidence of the feasibility of MCP. In addition, the SAS reports contain a wealth of information regarding the physiological requirements to make MCP work at the time, which is still accurate today. This paper serves to document the Space Activity Suit effort and analyze it in today's context.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2019-173 , JSC-E-DAA-TN68682 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: During the first two weeks of September 2005, the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Advanced Extravehicular Activity (AEVA) team led the field test portion of the 2005 Research and Technology Studies (RATS). The Desert RATS field test activity is the culmination of the various individual science and advanced engineering discipline areas year-long technology and operations development efforts into a coordinated field test demonstration under representative (analog) planetary surface terrain conditions. The purpose of the RATS is to drive out preliminary exploration concept of operations EVA system requirements by providing hands-on experience with simulated planetary surface exploration extravehicular activity (EVA) hardware and procedures. The RATS activities also are of significant importance in helping to develop the necessary levels of technical skills and experience for the next generation of engineers, scientists, technicians, and astronauts who will be responsible for realizing the goals of the Constellation Program. The 2005 Desert RATS was the eighth RATS field test and was the most systems-oriented, integrated field test to date with participants from NASA field centers, the United States Geologic Survey (USGS), industry partners, and research institutes. Each week of the test, the 2005 RATS addressed specific sets of objectives. The first week focused on the performance of surface science astro-biological sampling operations, including planetary protection considerations and procedures. The second week supported evaluation of the Science, Crew, Operations, and Utility Testbed (SCOUT) proto-type rover and its sub-systems. Throughout the duration of the field test, the Communications, Avionics, and Infomatics pack (CAI-pack) was tested. This year the CAI-pack served to provide information on surface navigation, science sample collection procedures, and EVA timeline awareness. Additionally, 2005 was the first year since the Apollo program that two pressurized suited test subjects have worked together simultaneously. Another first was the demonstration of recharge of cryogenic life support systems while in-use by the suited test subjects. The recharge capability allowed the simulated EVA test duration to be doubled, facilitating SCOUT proto-type rover testing. This paper summarizes Desert RATS 2005 test hardware, detailed test objectives, test operations and test results.
    Keywords: Lunar and Planetary Science and Exploration
    Type: SAE-2006-01-2138 , International Conference on Environmental Systems; Jul 16, 2006 - Jul 21, 2006; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A variety of hardware developers, crew, mission planners, and headquarters personnel traveled to Gila Bend, Arizona, in February 2008 for a CxP Lunar Surface Systems Team geology experience. Participating in this field trip were the CxP Space Suit System (EC5) leads: Thomas (PLSS) and Ross (PGS), who presented the activities and findings learned from being in the field during this KC. As for the design of a new spacesuit system, this allowed the engineers to understand the demands this type of activity will have on NASA's hardware, systems, and planning efforts. The engineers also experienced the methods and tools required for lunar surface activity.
    Keywords: Social and Information Sciences (General); Earth Resources and Remote Sensing
    Type: JSC-CN-33154 , JSC Engineering Academy; Mar 27, 2008; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The Constellation program pressure garment subsystem (PGS) team has created a technical roadmap that communicates major technical questions and how and when the questions are being answered in support of major project milestones. The roadmap is a living document that guides the team priorities. The roadmap also communicates technical reactions to changes in project priorities and funding. This paper presents the roadmap and discusses specific roadmap elements in detail as representative examples to provide insight into the meaning and use of the roadmap.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-20279 , 30th International Conference on Environmental Systems (ICES); Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...