ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-13
    Description: Dispersion analysis of Rayleigh waves is performed to assess the velocity of complex structures such as sedimentary basins. At short periods several modes of the Rayleigh waves are often exited. To perform a reliable inversion of the velocity structure an identification of these modes is thus required. We propose a novel method to identify the modes of surface waves. We use the spectral ratio of the ground velocity for the horizontal components over the vertical component (H/V) measured on seismic coda. We then compare the observed values with the theoretical H/V ratio for velocity models deduced from surface wave dispersion when assuming a particular mode. We first invert the Rayleigh wave measurements retrieved from ambient noise cross-correlation with the assumptions that (1) the fundamental mode and (2) the first overtone are excited. Then we use these different velocity models to predict theoretical spectral ratios of the ground velocity for the horizontal components over the vertical component (H/V). These H/V ratios are computed under the hypothesis of equipartition of a diffuse field in a layered medium. Finally we discriminate between fundamental and higher modes by comparing the theoretical H/V ratio with the H/V ratio measured on seismic coda. In an application, we reconstruct Rayleigh waves from cross-correlations of ambient seismic noise recorded at seven broad-band stations in the Valley of Mexico. For paths within the soft quaternary sediments basin, the maximum energy is observed at velocities higher than expected for the fundamental mode. We identify that the dominant mode is the first higher mode, which suggests the importance of higher modes as the main vectors of energy in such complex structures.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-23
    Description: Author(s): J. Gauthier, R. Roy, P. St-Onge, B. Wallace, M. F. Rivet, D. Gruyer, J. D. Frankland, A. Chbihi, M. Boisjoli, E. Legouee, M. Pârlog, R. Bougault, N. Le Neindre, P. Marini, E. Rosato, and D. Guinet (INDRA Collaboration) Isotopic ratios for light fragments (Z≤4) emitted by the quasiprojectile (QP) and the mid-rapidity (MR) sources are investigated by the use of a slightly asymmetric system (Ar36+Ni58) and a symmetric one (Ni58+Ni58) for six energies between 32A and 84A MeV and three semiperipheral centrality range s... [Phys. Rev. C 90, 034618] Published Mon Sep 22, 2014
    Keywords: Nuclear Reactions
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-12-19
    Description: We use ambient noise cross-correlations to monitor small but reliable changes in seismic velocities and to analyse non-volcanic tremor (NVT) intensities during the slow slip event (SSE) that occurred in 2009 and 2010 in Guerrero. We test the sensitivity of the seismic velocity to strain variations in absence of strong motions. The 2009–2010 SSE presents a complex slip sequence with two subevents occurring in two different portions of the fault. From a seismic array of 59 seismometers, installed in small antennas, we detect a velocity drop with maximum amplitude at the time of the first subevent. We analyse the velocity change at different period bands and observe that the velocity perturbation associated with the SSE maximizes for periods longer than 12 s. Then a linearized inversion of the velocity change measured at different period bands is applied in order to determine the depth of the portion of the crust affected by this perturbation. No velocity change in the first 10 km is detected. Below, the velocity perturbation increases with depth, affecting the middle and lower crust. Finally, we compute the transient deformation produced by the SSE in an elastic model using the slip evolution recovered from the inversion of continuous GPS. The comparison between the velocity changes and the deformation suggests that the velocity change is correlated with the strain rate rather than with the strain. This result is similar to what was observed during the 2006 SSE in the same region and suggests a non-linear behaviour of the crust. The velocity changes can be interpreted together with other observables such as NVTs. During the 2009–2010 SSE we measure NVT activity using continuous seismic records filtered between 2 and 8 Hz. We observe a correlation between velocity changes (for period band greater than 14 s) and tremor activity whereas no correlation exists between velocity changes and seismic noise energy measured at long periods. These observations suggest that both seismic velocity change and NVT can be used as indication of transient deformation at depth.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉The South-Western Alps and the Ligurian margin is a region of moderate seismicity with a high rate of small to moderate events. Identifying the active faults in this very densely populated region is critical to better assess the hazard and mitigate the risk. An accurate 3D velocity model of the shallow to middle crust is a fundamental step to better locate the seismicity, and hence, the faults from which it originates.We performed ambient noise surface-wave tomography based on all available continuous seismological data from the French and Italian permanent networks (RESIF, INGV, RSNI), and current and past temporary experiments (AlpArray, CASSAT, SISVAR, RISVAL). In addition to these available data, we deployed three more stations to improve the spatial resolution in a region with sparse seismic station coverage. Overall, we used 55 inland seismic stations, 5 oceans bottom seismometers and 2 offshore cabled site/sensors. Data span the 2014–2018 time period. Time series from all available components were cross-correlated to reconstruct both Rayleigh and Love-wave Green's functions. For each station-pair Rayleigh and Love group velocity dispersion curves were semi-automatically picked using a frequency-time analysis. Then we regionalize these group velocities to build 2D Rayleigh and Love velocity-maps between 1.5 and 9 s period. Using a two-step inversion, we estimate the best 3D shear wave velocity model. The first step is based on a Neighbourhood Algorithm to recover the best 3 layers’ velocity model at each cell of the model. We then use this three-layer model as a starting model in a perturbational method based on finite elements. At periods up to 5 s, the spatial variation of the velocity is well correlated with the effective geology of the area. Lower velocities are observed in areas where the sedimentary cover is thicker, such as the Var and Paillon valley near Nice, or in the subalpine domain in the northwestern part of the region. Higher velocities are retrieved in areas where massifs are present, such as the Argentera-Mercantour massifs in the northeastern, or the Esterel massif in the southwestern part of the region.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉The Southwestern Alps and the Ligurian margin is a region of moderate seismicity with a high rate of small to moderate events. Identifying the active faults in this very densely populated region is critical to better assess the hazard and mitigate the risk. An accurate 3-D velocity model of the shallow to middle crust is a fundamental step to better locate the seismicity, and hence, the faults from which it originates.We performed ambient noise surface-wave tomography based on all available continuous seismological data from the French and Italian permanent networks (RESIF, INGV, RSNI), and current and past temporary experiments (AlpArray, CASSAT, SISVAR, RISVAL). In addition to these available data, we deployed three more stations to improve the spatial resolution in a region with sparse seismic station coverage. Overall, we used 55 inland seismic stations, 5 oceans bottom seismometers and 2 offshore cabled site/sensors. Data span the 2014–2018 time period. Time series from all available components were cross-correlated to reconstruct both Rayleigh and Love-wave Green's functions. For each station-pair Rayleigh and Love group velocity dispersion curves were semi-automatically picked using a frequency–time analysis. Then we regionalize these group velocities to build 2-D Rayleigh and Love velocity-maps between 1.5 and 9 s period. Using a two-step inversion, we estimate the best 3-D shear wave velocity model. The first step is based on a Neighbourhood Algorithm to recover the best three layers’ velocity model at each cell of the model. We then use this three-layer model as a starting model in a perturbational method based on finite elements. At periods up to 5 s, the spatial variation of the velocity is well correlated with the effective geology of the area. Lower velocities are observed in areas where the sedimentary cover is thicker, such as the Var and Paillon valley near Nice, or in the subalpine domain in the northwestern part of the region. Higher velocities are retrieved in areas where massifs are present, such as the Argentera-Mercantour massifs in the northeastern, or the Esterel massif in the southwestern part of the region.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-12-01
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
  • 9
    Publication Date: 2024-02-21
    Description: Distributed Acoustic Sensing (DAS) is becoming a powerful tool for earthquake monitoring, providing continuous strain-rate records of seismic events along fiber optic cables. However, the use of standard seismological techniques for earthquake source characterization requires the conversion of data in ground motion quantities. In this study we provide a new formulation for far-field strain radiation emitted by a seismic rupture, which allows to directly analyze DAS data in their native physical quantity. This formulation naturally accounts for the complex directional sensitivity of the fiber to body waves and to the shallow layering beneath the cable. In this domain, we show that the spectral amplitude of the strain integral is related to the Fourier transform of the source time function, and its modeling allows to determine the source parameters. We demonstrate the validity of the technique on two case-studies, where source parameters are consistent with estimates from standard seismic instruments in magnitude range 2.0–4.3. When analyzing events from a 1-month DAS survey in Chile, moment-corner frequency distribution shows scale invariant stress drop estimates, with an average of Δσ = (0.8 ± 0.6) MPa. Analysis of DAS data acquired in the Southern Apennines shows a dominance of the local attenuation that masks the effective corner frequency of the events. After estimating the local attenuation coefficient, we were able to retrieve the corner frequencies for the largest magnitude events in the catalog. Overall, this approach shows the capability of DAS technology to depict the characteristic scales of seismic sources and the released moment.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...