ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2010-02-17
    Print ISSN: 0723-4864
    Electronic ISSN: 1432-1114
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-23
    Description: In this study a linear stability analysis of shallow-water flows is undertaken for a representative Froude number F = 3.5. The focus is on monotonic base flow profiles U without an inflection point, in order to study critical layer instability (CLI) and its interaction with radiative instability (RI). First the dispersion relation is presented for the piecewise linear profile studied numerically by Satomura (J. Meterol. Soc. Japan, vol. 59, 1981, pp. 148-167) and using WKBJ analysis an interpretation given of mode branches, resonances and radiative instability. In particular surface gravity (SG) waves can resonate with a limit mode (LM) (or Rayleigh wave), localised near the discontinuity in shear in the flow; in this piecewise profile there is no critical layer. The piecewise linear profile is then continuously modified in a family of nonlinear profiles, to show the effect of the vorticity gradient Q′ = - U″ on the nature of the modes. Some modes remain as modes and others turn into quasi-modes (QM), linked to Landau damping of disturbances to the flow, depending on the sign of the vorticity gradient at the critical point. Thus an interpretation of critical layer instability for continuous profiles is given, as the remnant of the resonance with the LM. Numerical results and WKBJ analysis of critical layer instability and radiative instability for more general smooth profiles are provided. A link is made between growth rate formulae obtained by considering wave momentum and those found via the WKBJ approximation. Finally the competition between the stabilising effect of vorticity gradients in a critical layer and the destabilising effect of radiation (radiative instability) is studied. © 2014 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-02-22
    Description: In this work, we analyse the linear stability of a frozen Lamb-Oseen vortex in a fluid linearly stratified along the vortex axis. The temporal stability properties of three-dimensional normal modes are obtained under the Boussinesq approximation with a Chebychev collocation spectral code for large ranges of Froude numbers and Reynolds numbers (the Schmidt number being fixed to 700). A specific integration technique in the complex plane is used in order to apply the condition of radiation at infinity. For large Reynolds numbers and small Froude numbers, we show that the vortex is unstable with respect to all non-axisymmetrical waves. The most unstable mode is however always a helical radiative mode (m = 1) which resembles either a displacement mode or a ring mode. The displacement mode is found to be unstable for all Reynolds numbers and for moderate Froude numbers (F ∼ 1). The radiative ring mode is by contrast unstable only for large Reynolds numbers above 104 and is the most unstable mode for large Froude numbers (F 〉 2). The destabilization of this mode for large Froude numbers is shown to be associated with a resonance mechanism which is analysed in detail. Analyses of the scaling and of the spatial structure of the different unstable modes are also provided. Copyright © Cambridge University Press 2010.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-02-07
    Description: The stability of the flow around a rotating cylinder in a fluid linearly stratified along the cylinder axis is studied numerically and experimentally for moderate Reynolds numbers. The flow is assumed potential and axisymmetric with an angular velocity profile Ω = 1/r 2, where r is the radial coordinate. Neglecting density diffusion and non-Boussinesq effects, the properties of the linear normal modes are first provided. A comprehensive stability diagram is then obtained for Froude numbers between 0 and 3 and Reynolds numbers below 1000. The main result is that the potential flow, which is stable for a homogeneous fluid, becomes unstable for Froude number close to one and for Reynolds numbers larger than 360. The numerical results are then compared with experimental results obtained using shadowgraph and synthetic Schlieren techniques. Two symmetrical helical modes are found to be simultaneously unstable. We show that these modes exhibit an internal gravity wave structure extending far from the cylinder in agreement with the theory. Their wavelength and frequency are shown to be in good agreement with the numerical predictions for a large range of Froude and Reynolds numbers. These experimental results are the first indisputable evidence of the radiative instability. Copyright © Cambridge University Press 2011.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...