ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-01-17
    Description: Organic Letters DOI: 10.1021/ol3034803
    Print ISSN: 1523-7060
    Electronic ISSN: 1523-7052
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Flight simulation has been almost exclusively concerned with simulating the motions of the aircraft. Physically distinct subsystems are often combined to simulate the varieties of aircraft motion. Visual display systems simulate the motion of the aircraft relative to remote objects and surfaces (e.g., other aircraft and the terrain). 'Motion platform' simulators recreate aircraft motion relative to the gravitoinertial vector (i.e., correlated rotation and tilt as opposed to the 'coordinated turn' in flight). 'Control loaders' attempt to simulate the resistance of the aerodynamic medium to aircraft motion. However, there are few operational systems that attempt to simulate the motion of the pilot relative to the aircraft and the gravitoinertial vector. The design and use of all simulators is limited by poor understanding of postural control in the aircraft and its effect on the perception and control of flight. Analysis of the perception and control of flight (real or simulated) must consider that: (1) the pilot is not rigidly attached to the aircraft; and (2) the pilot actively monitors and adjusts body orientation and configuration in the aircraft. It is argued that this more complete approach to flight simulation requires that multimodal perception be considered as the rule rather than the exception. Moreover, the necessity of multimodal perception is revealed by emphasizing the complementarity rather than the redundancy among perceptual systems. Finally, an outline is presented for an experiment to be conducted at NASA ARC. The experiment explicitly considers possible consequences of coordination between postural and vehicular control.
    Keywords: BEHAVIORAL SCIENCES
    Type: NASA. Ames Research Center, Visually Guided Control of Movement; p 157-174
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The purpose of this report is to identify the essential characteristics of goal-directed whole-body motion. The report is organized into three major sections (Sections 2, 3, and 4). Section 2 reviews general themes from ecological psychology and control-systems engineering that are relevant to the perception and control of whole-body motion. These themes provide an organizational framework for analyzing the complex and interrelated phenomena that are the defining characteristics of whole-body motion. Section 3 of this report applies the organization framework from the first section to the problem of perception and control of aircraft motion. This is a familiar problem in control-systems engineering and ecological psychology. Section 4 examines an essential but generally neglected aspect of vehicular control: coordination of postural control and vehicular control. To facilitate presentation of this new idea, postural control and its coordination with vehicular control are analyzed in terms of conceptual categories that are familiar in the analysis of vehicular control.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TP-3703 , S-835 , NAS 1.60:3703
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: In this report we describe the details of our empirical protocol effort investigating skill in extravehicular mass handling using NASA's principal mass handling simulator, the precision air bearing floor. Contents of this report include a description of the necessary modifications to the mass handling simulator; choice of task, and the description of an operationally relevant protocol. Our independent variables are presented in the context of the specific operational issues they were designed to simulate. The explanation of our dependent variables focuses on the specific data processing procedures used to transform data from common laboratory instruments into measures that are relevant to a special class of nested control systems (discussed in Volume 1): manual interactions between an individual and the substantial environment. The data reduction is explained in the context of the theoretical foundation described in Volume 1. Finally as a preface to the presentation of the empirical data in Volume 3 of this report series, a set of detailed hypotheses is presented.
    Keywords: Man/System Technology and Life Support
    Type: NASA-TP-3684-Vol-2 , S-827 , NAS 1.60:3684-Vol-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: Key attributes of skilled mass handling were identified through an examination of lessons learned by the extravehicular activity operational community. These qualities were translated into measurable quantities. The operational validity of the ground-based investigation was improved by building a device that increased the degrees of freedom of extravehicular mobility unit motion on the Precision Air-Bearing Floor. The results revealed subtle patterns of interaction between motions of an orbital replacement unit mockup and mass handler that should be important for effective performance on orbit. The investigation also demonstrated that such patterns can be measured with a variety of common instruments and under imperfect conditions of observation.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TP-1998-3684/Vol-3 , NAS 1.60:3684/Vol-3 , S-827
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine; Lunar and Planetary Science and Exploration
    Type: JSC-CN-35191 , NASA Human Research Program Investigators'' Workshop (HRP IWG 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: Our theoretical and empirical research on the whole-body coordination during locomotion led to a Phase 1 SBIR grant from NASA JSC. The purpose of the SBIR grant was to design an innovative system for evaluating eye-head-trunk coordination during whole-body perturbations that are characteristic of locomotion. The approach we used to satisfy the Phase 1 objectives was based on a structured methodology for the development of human-systems technology. Accordingly the project was broken down into a number of tasks and subtasks. In sequence, the major tasks were: (1) identify needs for functional assessment of visual acuity under conditions involving whole-body perturbation within the NASA Space Medical Monitoring and Countermeasures (SMMaC) program and in other related markets; (2) analyze the needs into the causes and symptoms of impaired visual acuity under conditions involving whole-body perturbation; (3) translate the analyzed needs into technology requirements for the Functional Visual Assessment Test (FVAT); (4) identify candidate technology solutions and implementations of FVAT; and (5) prioritize and select technology solutions. The work conducted in these tasks is described in this final volume of the series on Multimodal Perception and Multicriterion Control of Nested Systems. While prior volumes (1 and 2) in the series focus on theoretical foundations and novel data-analytic techniques, this volume addresses technology that is necessary for minimally intrusive data collection and near-real-time data analysis and display.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TP-1999-3703 , S-835 , NAS 1.60:3703
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A workshop entitled 'Visually Guided Control of Movement' was held at NASA Ames Research Center on June 26 - July 14, 1989. The workshop brought together individuals with diverse backgrounds related to the areas of the visual perception and control of motion. During the workshop, participants designed and conducted experiments using NASA Ames flight simulation research facilities. These studies contrasted participants' alternative theoretical approaches to the visual control of self motion. Panel members, drawn from the workshop's participants, will discuss their approaches to the study of the control of self motion and will present interpretations of the outcomes of the workshop.
    Keywords: BEHAVIORAL SCIENCES
    Type: Human Factors Society Annual Meeting; Oct 16, 1989 - Oct 20, 1989; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-15
    Description: This report reviews the operational demands made of a Shuttle pilot or commander within the context of a proven empirical methodology for describing human sensorimotor performance and whole-body coordination in mechanically and perceptually complex environments. The conclusions of this review pertain to a) methods for improving our understanding of the psychophysics and biomechanics of visual/manual control and whole-body coordination in space vehicle cockpits; b) the application of scientific knowledge about human perception and performance in dynamic inertial conditions to the development of technology, procedures, and training for personnel in space vehicle cockpits; c) recommendations for mitigation of safety and reliability concerns about human performance in space vehicle cockpits; and d) in-flight evaluation of flight crew performance during nominal and off-nominal launch and reentry scenarios.
    Keywords: Man/System Technology and Life Support
    Type: NASA-TP-1998-3703 , NAS 1.60:3703 , S-835
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-15
    Description: This report describes the theoretical and operational foundations for our analysis of skill in extravehicular mass handling. A review of our research on postural control, human-environment interactions, and exploratory behavior in skill acquisition is used to motivate our analysis. This scientific material is presented within the context of operationally valid issues concerning extravehicular mass handling. We describe the development of meaningful empirical measures that are relevant to a special class of nested control systems: manual interactions between an individual and the substantial environment. These measures are incorporated into a unique empirical protocol implemented on NASA's principal mass handling simulator, the precision air-bearing floor, in order to evaluate skill in extravehicular mass handling. We discuss the components of such skill with reference to the relationship between postural configuration and controllability of an orbital replacement unit, the relationship between orbital replacement unit control and postural stability, the relationship between antecedent and consequent movements of an orbital replacement unit, and the relationship between antecedent and consequent postural movements. Finally, we describe our expectations regarding the operational relevance of the empirical results as it pertains to extravehicular activity tools, training, monitoring, and planning.
    Keywords: Man/System Technology and Life Support
    Type: NASA-TP-3684-Vol-1 , S-827 , NAS 1.60:3684
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...