ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Language
Years
  • 1
    Publication Date: 2023-02-09
    Description: The rewetting of peatlands is a promising measure to mitigate greenhouse gas (GHG) emissions by preventing the further mineralization of the peat soil through aeration. In coastal peatland, the rewetting with brackish water can increase the GHG mitigation potential by the introduction of sulfate, a terminal electron acceptor (TEA). Sulfate is known to lower the CH4 production and thus, its emission by favoring the growth of sulfate-reducers, which outcompete methanogens for substrate. The data contain porewater variables such as pH, electrical conductivity (EC) and sulfate, chloride, dissolved CO2 and CH4 concentrations, as well as absolute abundances of methane- and sulfate-cycling microbial communities. The data were collected in spring and autumn 2019 after a storm surge with brackish water inflow in January 2019. Field sampling was conducted in the nature reserve Heiligensee and Hütelmoor in North-East Germany, close to the Southern Baltic Sea coast. We took peat cores using a Russian peat corer in addition to pore water diffusion samplers and plastic liners (length: 60cm; inner diameter 10 cm) at four locations along a transect from further inland towards the Baltic Sea. We wanted to compare the soil and pore water geochemistry as well as the microbial communities after the brackish water inflow to the common freshwater rewetting state. Pore water was extracted using pore water suction samplers in the lab and environmental variables were quantified with an ICP. Microbial samples were sampled from the peat core using sterile equipment. We used quantitative polymerase chain reaction (qPCR) to characterize pools of DNA and cDNA targeting total and putatively active bacteria and archaea. qPCR was performed on key functional genes of methane production (mcrA), aerobic methane oxidation (pmoA) and sulfate reduction (dsrB) in addition to the 16S rRNA gene for the absolute abundance of total prokaryotes. Furthermore, we retrieved soil plugs to determine the concentrations and isotopic signatures of dissolved trace gases (CO2/DIC and CH4) in the pore water.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-09
    Description: Rewetted peatlands can be a significant source of methane (CH4), but in coastal ecosystems, input of sulfate-rich seawater could potentially mitigate these emissions. The presence of sulfate as an electron acceptor during organic matter decomposition is known to suppress methanogenesis by favoring the growth of sulfate reducers, which outcompete methanogens for substrate. We investigated the effects of a brackish water inflow on the microbial communities relative to CH4 production–consumption dynamics in a freshwater rewetted fen at the southern Baltic Sea coast after a storm surge in January 2019 and analyzed our data in context with the previous freshwater rewetted state (2014 serves as our baseline) and the conditions after a severe drought in 2018 (Fig. 1). We took peat cores at four previously sampled locations along a brackishness gradient to compare soil and pore water geochemistry as well as the microbial methane- and sulfate-cycling communities with the previous conditions. We used high-throughput sequencing and quantitative polymerase chain reaction (qPCR) to characterize pools of DNA and RNA targeting total and putatively active bacteria and archaea. Furthermore, we measured CH4 fluxes along the gradient and determined the concentrations and isotopic signatures of trace gases in the peat. We found that both the inflow effect of brackish water and the preceding drought increased the sulfate availability in the surface and pore water. Nevertheless, peat soil CH4 concentrations and the 13C compositions of CH4 and total dissolved inorganic carbon (DIC) indicated ongoing methanogenesis and little methane oxidation. Accordingly, we did not observe a decrease in absolute methanogenic archaea abundance or a substantial change in methanogenic community composition following the inflow but found that the methanogenic community had mainly changed during the preceding drought. In contrast, absolute abundances of aerobic methanotrophic bacteria decreased back to their pre-drought level after the inflow, while they had increased during the drought year. In line with the higher sulfate concentrations, the absolute abundances of sulfate-reducing bacteria (SRB) increased – as expected – by almost 3 orders of magnitude compared to the freshwater state and also exceeded abundances recorded during the drought by over 2 orders of magnitude. Against our expectations, methanotrophic archaea (ANME), capable of sulfate-mediated anaerobic methane oxidation, did not increase in abundance after the brackish water inflow. Altogether, we could find no microbial evidence for hampered methane production or increased methane consumption in the peat soil after the brackish water inflow. Because Koebsch et al. (2020) reported a new minimum in CH4 fluxes at this site since rewetting of the site in 2009, methane oxidation may, however, take place in the water column above the peat soil or in the loose organic litter on the ground. This highlights the importance of considering all compartments across the peat–water–atmosphere continuum to develop an in-depth understanding of inflow events in rewetted peatlands. We propose that the changes in microbial communities and greenhouse gas (GHG) fluxes relative to the previous freshwater rewetting state cannot be explained with the brackish water inflow alone but were potentially reinforced by a biogeochemical legacy effect of the preceding drought.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-03
    Description: Rewetted peatlands can be a significant source of methane (CH4), but in coastal ecosystems, input of sulfate-rich seawater could potentially mitigate these emissions. The presence of sulfate as electron acceptor during organic matter decomposition is known to suppress methanogenesis, by favoring the growth of sulfate-reducers, which outcompete methanogens for substrate. We investigated the effects of a brackish water inflow on the microbial communities relative to CH4 production-consumption dynamics in a freshwater rewetted fen at the southern Baltic Sea coast after a storm surge in January 2019 and analyzed our data in context with the previous freshwater rewetted state (2014 serves as our baseline) and the conditions after a severe drought in 2018. We took peat cores at four previously sampled locations along a brackishness gradient to compare soil and pore water geochemistry as well as the microbial methane and sulfate cycling communities with the previous conditions. We used high-throughput sequencing and quantitative polymerase chain reaction (qPCR) to characterize pools of DNA and cDNA targeting total and putatively active bacteria and archaea. Furthermore, we measured CH4 fluxes along the gradient and determined the concentrations and isotopic signatures of trace gases in the peat. We found that both, the inflow effect of brackish water and in parts also the preceding drought increased the sulfate availability in the surface and pore water. Still, peat soil CH4 concentrations and the 13C compositions of CH4 and total dissolved inorganic carbon (DIC) indicated ongoing methanogenesis and little methane oxidation. Accordingly, we did not observe a decrease of absolute methanogenic archaea abundance or a substantial change in methanogenic community composition following the inflow, but found that the methanogenic community had mainly changed during the precedent drought. In contrast, absolute abundances of aerobic methanotrophic bacteria decreased back to their pre-drought level after the inflow while they had increased during the drought year. In line with the higher sulfate concentrations, the absolute abundances of sulfate reducing bacteria (SRB) increased – as expected – by almost three orders of magnitude compared to the freshwater state and also exceeded abundances recorded during the drought by over two orders of magnitude. Against our expectations, methanotrophic archaea (ANME), capable of sulfate-mediated anaerobic methane oxidation, did not increase in abundance after the brackish water inflow. Altogether, we could find no microbial evidence for hampered methane production or increased methane consumption in the peat soil after the brackish water inflow. Because Koebsch et al. (2020) reported a new minimum in CH4 fluxes at this site since rewetting of the site in 2009, methane oxidation may, however, take place in the water column above the peat soil or in the lose organic litter on the ground. This highlights the importance to consider all compartments across the peat-water-atmosphere continuum to develop an in-depth understanding of inflow events in rewetted peatlands. We propose that the changes in microbial communities and GHG fluxes relative to the previous freshwater rewetting state cannot be explained with the brackish water inflow alone, but was potentially reinforced by a biogeochemical legacy effect of the precedent drought.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...