ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AMERICAN GEOPHYSICAL UNION
    In:  EPIC3Journal of Advances in Modeling Earth Systems, AMERICAN GEOPHYSICAL UNION, 11(2), pp. 545-557, ISSN: 1942-2466
    Publication Date: 2021-02-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    NATURE RESEARCH
    In:  EPIC3Nature Communications, NATURE RESEARCH, 12(1), pp. 2966, ISSN: 2041-1723
    Publication Date: 2021-07-01
    Description: As a cooling machine of the Arctic Ocean, the Barents Sea releases most of the incoming ocean heat originating from the North Atlantic. The related air-sea heat exchange plays a crucial role in both regulating the climate and determining the deep circulation in the Arctic Ocean and beyond. It was reported that the cooling efficiency of this cooling machine has decreased significantly. In this study, we find that the overall cooling efficiency did not really drop: When the cooling efficiency decreased in the southern Barents Sea, it increased in the northern Barents and Kara Seas, indicating that the cooling machine has expanded poleward. According to climate model projections, it is very likely that the cooling machine will continue to expand to the Kara Sea and then to the Arctic Basin in a warming climate. As a result, the Arctic Atlantification will be enhanced and pushed poleward in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 48(10), pp. e2020GL090951, ISSN: 0094-8276
    Publication Date: 2021-07-01
    Description: Freshwater in the Arctic Ocean is one of the key climate components. It is not well understood how the capability of the Arctic Ocean to store freshwater will develop when freshwater supplies increase in a warming climate. By using numerical experiments, we find that this capability varies with the Arctic sea ice decline nonmonotonically, with the largest capability at intermediate strength of sea ice decline. Through enhancing the ocean surface stress, sea ice decline not only accumulates freshwater toward the Amerasian Basin but also tends to reduce the amount of freshwater in both the Eurasian and Amerasian basins by increasing the occupation of Atlantic-origin water in the upper ocean. An increase in river runoff modulates the counterbalance of the two competing effects, leading to the nonmonotonic changes of the Arctic freshwater storage capability in a warming climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    IOP PUBLISHING LTD
    In:  EPIC3Environmental Research Letters, IOP PUBLISHING LTD, 16(3), pp. 034008, ISSN: 1748-9326
    Publication Date: 2021-03-08
    Description: Widespread mismatches between proxy-based and modelling studies of the Last Glacial Maximum (LGM) has limited better understanding about interglacial-glacial climate change. In this study, we incorporate non-breaking surface waves (NBW) induced mixing into an ocean model to assess the potential role of waves in changing a simulation of LGM upper oceans. Our results show a substantial 40 m subsurface warming introduced by surface waves in LGM summer, with larger magnitudes relative to the present-day ocean. At the ocean surface, according to the comparison between the proxy data and our simulations, the incorporation of the surface wave process into models can potentially decrease the model-data discrepancy for the LGM ocean. Therefore, our findings suggest that the inclusion of NBW is helpful in simulating glacial oceans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-03-12
    Description: We revisit the challenges and prospects for ocean circulation models following Griffies et al. (2010). Over the past decade, ocean circulation models evolved through improved understanding, numerics, spatial discretization, grid configurations, parameterizations, data assimilation, environmental monitoring, and process-level observations and modeling. Important large scale applications over the last decade are simulations of the Southern Ocean, the Meridional Overturning Circulation and its variability, and regional sea level change. Submesoscale variability is now routinely resolved in process models and permitted in a few global models, and submesoscale effects are parameterized in most global models. The scales where nonhydrostatic effects become important are beginning to be resolved in regional and process models. Coupling to sea ice, ice shelves, and high-resolution atmospheric models has stimulated new ideas and driven improvements in numerics. Observations have provided insight into turbulence and mixing around the globe and its consequences are assessed through perturbed physics models. Relatedly, parameterizations of the mixing and overturning processes in boundary layers and the ocean interior have improved. New diagnostics being used for evaluating models alongside present and novel observations are briefly referenced. The overall goal is summarizing new developments in ocean modeling, including: how new and existing observations can be used, what modeling challenges remain, and how simulations can be used to support observations
    Description: Published
    Description: Article 65
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    SPRINGER
    In:  EPIC3Climate Dynamics, SPRINGER, 53(9-10), pp. 5279-5291, ISSN: 0930-7575
    Publication Date: 2019-11-04
    Description: Atlantic water (AW) plays an important role in the thermal balance of the Arctic Ocean, but thus far there has been no comprehensive assessment of the AW layer in the Arctic Ocean simulated by coupled climate models in the framework of Coupled Model Intercomparison Project (CMIP). In this study we assessed the climatology and the trend of the Arctic AW layer in the historical simulations of 41 CMIP5 climate models. The results show that the CMIP5 intermodel spread is large in terms of simulated hydrography, AW core temperature (AWCT) and AW core depth (AWCD) in the Arctic Ocean. The CMIP5 multimodel means are found to be able to reproduce the main climatological spatial patterns of both the AWCT, which is warm near the Fram Strait and decreases along the AW pathways, and the AWCD, which deepens along the AW pathways. However, similar to standalone ocean-ice models, the CMIP5 climate models also face the common problems of too deep and too thick AW layer. AWCT bias in the Arctic Ocean is related to simulated water properties near the Fram Strait and in the Kara and Barents seas. Models with large AWCT biases are those with large biases in AW temperature in the Fram Strait. The biases of AWCT are also significantly correlated with the ocean temperature in the Kara Sea, which is modulated by winter cooling, hence the mixed layer depth and sea ice cover in the Barents Sea. The CMIP5 models largely underestimate the interannual variability of the AWCT, and the CMIP5-simulated increasing trend of the AWCT in the Arctic Ocean is considerably lower than the observed one since the late 1970s.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 47(9), pp. e2020GL087965, ISSN: 0094-8276
    Publication Date: 2020-05-04
    Description: Both the Arctic and Antarctic sea ice extents (SIE) from 44 coupled models in the Coupled Model Intercomparison Project Phase 6 (CMIP6) are evaluated by comparing them with observations and CMIP5 results. The CMIP6 multi‐model mean can adequately reproduce the seasonal cycles of both the Arctic and Antarctic SIE. The observed Arctic September SIE declining trend (−0.82±0.18 million km2/decade) between 1979 and 2014 is slightly underestimated in CMIP6 models (−0.70±0.06 million km2/decade). The observed weak but significant upward trend of the Antarctic SIE is not captured, which was an issue already in the CMIP5 phase. Compared with CMIP5 models, CMIP6 models have lower inter‐model spreads in SIE mean values and trends, although their SIE biases are relatively larger. The CMIP6 models did not reproduce the new summer tendencies after 2000, including the faster decline of Arctic SIE and the larger interannual variability in Antarctic SIE.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-08-16
    Description: Arctic near-surface air temperature warms much faster than the global average, a phenomenon known as Arctic Amplification. The change of the underlying Arctic Ocean could influence climate through its interaction with sea ice, atmosphere, and the global ocean, but it is less well understood. Here, we show that the upper 2000 m of the Arctic Ocean warms at 2.3 times the global mean rate within this depth range averaged over the 21st century in the Coupled Model Intercomparison Project Phase 6 Shared Socioeconomic Pathway 585 scenario. We call this phenomenon the “Arctic Ocean Amplification.” The amplified Arctic Ocean warming can be attributed to a substantial increase in poleward ocean heat transport, which will continue outweighing sea surface heat loss in the future. Arctic Amplification of both the atmosphere and ocean indicates that the Arctic as a whole is one of Earth’s regions most susceptible to climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-08-16
    Description: With the increase in computational power, ocean models with kilometer-scale resolution have emerged over the last decade. These models have been used for quantifying the energetic exchanges between spatial scales, informing the design of eddy parametrizations, and preparing observing networks. The increase in resolution, however, has drastically increased the size of model outputs, making it difficult to transfer and analyze the data. It remains, nonetheless, of primary importance to assess more systematically the realism of these models. Here, we showcase a cloud-based analysis framework proposed by the Pangeo project that aims to tackle such distribution and analysis challenges. We analyze the output of eight submesoscale-permitting simulations, all on the cloud, for a crossover region of the upcoming Surface Water and Ocean Topography (SWOT) altimeter mission near the Gulf Stream separation. The cloud-based analysis framework (i) minimizes the cost of duplicating and storing ghost copies of data and (ii) allows for seamless sharing of analysis results amongst collaborators. We describe the framework and provide example analyses (e.g., sea-surface height variability, submesoscale vertical buoyancy fluxes, and comparison to predictions from the mixed-layer instability parametrization). Basin- to global-scale, submesoscale-permitting models are still at their early stage of development; their cost and carbon footprints are also rather large. It would, therefore, benefit the community to document the different model configurations for future best practices. We also argue that an emphasis on data analysis strategies would be crucial for improving the models themselves.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Earth's Future, American Geophysical Union (AGU), 10(9), ISSN: 2328-4277
    Publication Date: 2022-11-06
    Description: In this study we assessed the representation of the sea surface salinity (SSS) and liquid freshwater content (LFWC) of the Arctic Ocean in the historical simulation of 31 CMIP6 models with comparison to 39 Coupled Model Intercomparison Project phase 5 (CMIP5) models, and investigated the projected changes in Arctic liquid and solid freshwater content and freshwater budget in scenarios with two different shared socioeconomic pathways (SSP2-4.5 and SSP5-8.5). No significant improvement was found in the SSS and LFWC simulation from CMIP5 to CMIP6, given the large model spreads in both CMIP phases. The overestimation of LFWC continues to be a common bias in CMIP6. In the historical simulation, the multi-model mean river runoff, net precipitation, Bering Strait and Barents Sea Opening (BSO) freshwater transports are 2,928 ± 1,068, 1,839 ± 3,424, 2,538 ± 1,009, and −636 ± 553 km3/year, respectively. In the last decade of the 21st century, CMIP6 MMM projects these budget terms to rise to 4,346 ± 1,484 km3/year (3,678 ± 1,255 km3/year), 3,866 ± 2,935 km3/year (3,145 ± 2,651 km3/year), 2,631 ± 1,119 km3/year (2,649 ± 1,141 km3/year) and 1,033 ± 1,496 km3/year (449 ± 1,222 km3/year) under SSP5-8.5 (SSP2-4.5). Arctic sea ice is expected to continue declining in the future, and sea ice meltwater flux is likely to decrease to about zero in the mid-21st century under both SSP2-4.5 and SSP5-8.5 scenarios. Liquid freshwater exiting Fram and Davis straits will be higher in the future, and the Fram Strait export will remain larger. The Arctic Ocean is projected to hold a total of 160,300 ± 62,330 km3 (141,590 ± 50,310 km3) liquid freshwater under SSP5-8.5 (SSP2-4.5) by 2100, about 60% (40%) more than its historical climatology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...