ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-01-19
    Description: This article presents studies that were performed in order to improve the subsurface properties of horizontally-formed cementitious composites using tin(II) fluoride nanoparticles. The main aim of the study was to solve the problem of the decrease in subsurface properties caused by mortar bleeding and the segregation of the aggregate along the height of the overlay. The article also aims to highlight the patch grabbing difficulties that occur during the process of forming horizontally-formed cementitious composites. Four specimens were analyzed: one reference sample and three samples modified with the addition of 0.5, 1.0, and 1.5% of tin(II) fluoride nanoparticles in relation to the cement mass. To analyze the mechanical properties of the specimens, non-destructive (ultrasonic pulse velocity) and destructive tests (flexural tensile strength, compressive strength, abrasion resistance, pull-off strength) were performed. It was indicated that due to the addition of the tin(II) fluoride, it was possible to enhance the subsurface tensile strength and abrasion resistance of the tested cementitious composites. To confirm the obtained macroscopic results, the porosity of the subsurface was measured using SEM. It was also shown that the addition of the tin(II) fluoride nanoparticles did not reduce its flexural and compressive strength. The results show that horizontally-formed cementitious composites with the addition of 1.0% of tin(II) fluoride nanoparticles in relation to the cement mass obtained the most effective mechanical performance, especially with regard to subsurface properties.
    Electronic ISSN: 2079-6412
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...