ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-05-15
    Description: In the geosciences, data are acquired, processed, analysed, modelled and interpreted in order to generate knowledge. Such a complex procedure is affected by uncertainties related to the objective (e.g. the data, technologies and techniques employed) as well as the subjective (knowledge, skills and biases of the geoscientist) aspects of the knowledge generation workflow. Unlike in other scientific disciplines, uncertainty and its impact on the validity of geoscientific outputs have often been overlooked or only discussed superficially. However, for geological outputs to provide meaningful insights, the uncertainties, errors and assumptions made throughout the data acquisition, processing, modelling and interpretation procedures need to be carefully considered. This special issue illustrates and brings attention to why and how uncertainty handling (i.e. analysis, mitigation and communication) is a critical aspect within the geosciences. In this introductory paper, we (1) outline the terminology and describe the relationships between a number of descriptors often used to characterise and classify uncertainty and error, (2) present the collection of research papers that together form the special issue, the idea for which stems from a 2018 European Geosciences Union's General Assembly session entitled “Understanding the unknowns: recognition, quantification, influence and minimisation of uncertainty in the geosciences”, and (3) discuss the limitations of the “traditional” treatment of uncertainty in the geosciences. “The efforts of many researchers have already cast much darkness on the subject, and it is likely that, if they continue, we will soon know nothing about it at all.” – Mark Twain
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-01
    Print ISSN: 0012-8252
    Electronic ISSN: 1872-6828
    Topics: Geography , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-01
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-09-18
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-03-30
    Description: Plate tectonic modellers often rely on the identification of “break-up” markers to reconstruct the early stages of continental separation. Along the Iberian-Newfoundland margin, so-called break-up markers include interpretations of old magnetic anomalies from the M series, as well as the “J anomaly”. These have been used as the basis for plate tectonic reconstructions are based on the concept that these anomalies pinpoint the location of first oceanic lithosphere. However, uncertainties in the location and interpretation of break-up markers, as well as the difficulty in dating them precisely, has led to plate models that differ in both the timing and relative palaeo-positions of Iberia and Newfoundland during separation. We use newly available seismic data from the Southern Newfoundland Basin (SNB) to assess the suitability of commonly used break-up markers along the Newfoundland margin for plate kinematic reconstructions. Our data show that basement associated with the younger M-series magnetic anomalies is comprised of exhumed mantle and magmatic additions and most likely represents transitional domains and not true oceanic lithosphere. Because rifting propagated northward, we argue that M-series anomaly identifications further north, although in a region not imaged by our seismic, are also unlikely to be diagnostic of true oceanic crust beneath the SNB. Similarly, our data also allow us to show that the high amplitude of the J Anomaly is associated with a zone of exhumed mantle punctuated by significant volcanic additions and at times characterized by interbedded volcanics and sediments. Magmatic activity in the SNB at a time coinciding with M4 (128 Ma) and the presence of SDR packages onlapping onto a basement fault suggest that, at this time, plate divergence was still being accommodated by tectonic faulting. We illustrate the differences in the relative positions of Iberia and Newfoundland across published plate reconstructions and discuss how these are a direct consequence of the uncertainties introduced into the modelling procedure by the use of extended continental margin data (dubious magnetic anomaly identifications, break-up unconformity interpretations). We conclude that a different approach is needed for constraining plate kinematics of the Iberian plate pre-M0 times.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-07-01
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Scientific Reports, Springer Nature, 7(11819)
    Publication Date: 2017-09-24
    Description: We present early Cretaceous to present paleobathymetric reconstructions and quantitative uncertainty estimates for the South Atlantic, offering a strong basis for studies of paleocirculation, paleoclimate and paleobiogeography. Circulation in an initially salty and anoxic ocean, restricted by the topography of the Falkland Plateau, Rio Grande Ridge and Walvis Rise, favoured deposition of thick evaporites in shallow water of the Brazilian-Angolan margins. This ceased as sea oor spreading propagated northwards, opening an equatorial gateway to shallow and intermediate circulation. This gateway, together with subsiding volcano-tectonic barriers would have played a key role in Late Cretaceous climate changes. Later deepening and widening of the South Atlantic, together with gateway opening at Drake Passage would lead, by mid-Miocene (∼15 Ma) to the establishment of modern-style thermohaline circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-07-26
    Description: Plate reconstruction studies show that the Neotethys Ocean was closing due to the convergence of Africa and Eurasia toward the end of the Cretaceous. The period around 75 Ma reflects the onset of continental collision between the two plates as convergence continued to be taken up mostly by subduction of the Neotethys slab beneath Eurasia. The Owen transform plate boundary in the northeast accommodated the fast northward motion of the Indian plate relative to the African plate. The rest of the plate was surrounded by mid-ocean ridges. Africa was experiencing continent-wide rifting related to northeast-southwest extension. We aim to quantify the forces and paleostresses that may have driven this continental extension. We use the latest plate kinematic reconstructions in a grid search to estimate horizontal gravitational stresses (HGSs), plate boundary forces, and the plate's interaction with the asthenosphere. The contribution of dynamic topography to HGSs is based on recent mantle convection studies. We model intraplate stresses and compare them with the strain observations. The fit to observations favors models where dynamic topography amplitudes are smaller than 300 m. The results also indicate that the net pull transmitted from slab to the surface African plate was low. To put this into context, we notice that available tectonic reconstructions show fragmented subduction zones and various colliding micro-continents along the northern margin of the African plate around this time. We therefore interpret a low net pull as resulting from either a small average slab length or from the micro-continents' resistance to subduction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-12-01
    Description: It has been suggested that plume arrival at the base of the lithosphere introduces a push force that overwhelms the balance of torques driving plate circuits, leading to plate-tectonic re- organizations. Among the most compelling evidence in support of a “plume-push” mechanism is the apparent coincidence between eruption of the Deccan flood basalts around 67–64 Ma and a short-lived increase in Indian (and decrease in African) plate speed. Using existing and newly calculated high-resolution plate-motion models, we show that plate divergence rates briefly increased throughout the Indo-Atlantic circuit, contrary to the expected effects of plume-push. We propose that this circuit-wide spike in divergence rates is best explained as the artifact of a magnetic reversal time-scale error around the much studied Cretaceous- Tertiary boundary, and that the period spanning chrons C29–C28 lasted 70% longer than currently assumed. Corrected for this error, the residual long-term patterns of Indo-Atlantic plate motions and accompanying plate-tectonic reorganization are explicable in terms of maturation of the circuit’s spreading ridges, without invoking a significant plume-push force.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Solid Earth, Copernicus Publications, 11, pp. 397-417
    Publication Date: 2020-03-31
    Description: Plate tectonic modellers often rely on the identifi- cation of “break-up” markers to reconstruct the early stages of continental separation. Along the Iberian-Newfoundland margin, so-called break-up markers include interpretations of old magnetic anomalies from the M series, as well as the “J anomaly”. These have been used as the basis for plate tectonic reconstructions are based on the concept that these anomalies pinpoint the location of first oceanic lithosphere. However, uncertainties in the location and interpretation of break-up markers, as well as the difficulty in dating them precisely, has led to plate models that differ in both the tim- ing and relative palaeo-positions of Iberia and Newfoundland during separation. We use newly available seismic data from the Southern Newfoundland Basin (SNB) to assess the suitability of com- monly used break-up markers along the Newfoundland mar- gin for plate kinematic reconstructions. Our data show that basement associated with the younger M-series magnetic anomalies is comprised of exhumed mantle and magmatic additions and most likely represents transitional domains and not true oceanic lithosphere. Because rifting propagated northward, we argue that M-series anomaly identifications further north, although in a region not imaged by our seis- mic, are also unlikely to be diagnostic of true oceanic crust beneath the SNB. Similarly, our data also allow us to show that the high amplitude of the J Anomaly is associated with a zone of exhumed mantle punctuated by significant volcanic additions and at times characterized by interbedded volcanics and sediments. Magmatic activity in the SNB at a time coin- ciding with M4 (128 Ma) and the presence of SDR packages onlapping onto a basement fault suggest that, at this time, plate divergence was still being accommodated by tectonic faulting. We illustrate the differences in the relative positions of Iberia and Newfoundland across published plate reconstruc- tions and discuss how these are a direct consequence of the uncertainties introduced into the modelling procedure by the use of extended continental margin data (dubious magnetic anomaly identifications, break-up unconformity interpreta- tions). We conclude that a different approach is needed for constraining plate kinematics of the Iberian plate pre-M0 times.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...