ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 19 (1999), S. 333-357 
    ISSN: 1573-269X
    Keywords: tiltrotor ; multi-body dynamics ; finite volume beams
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The paper describes the aeroelastic analysis of a tiltrotor configuration. The 1/5 scale wind tunnel semispan model of the V-22 tiltrotor aircraft is considered. The analysis is performed by means of a multi-body code, based on an original formulation. The differential equilibrium problem is stated in terms of first-order differential equations. The equilibrium equations of every rigid body are written together with the definitions of the momenta. The bodies are connected by kinematic constraints applied in the form of Lagrangian multipliers. Deformable components are mainly modelled by means of beam elements based on an original finite volume formulation. Multi-disciplinary problems can be solved by adding user-defined differential equations. In the presented analysis, the equations related to the control of the swash-plate of the model are considered. Advantages of a multi-body aeroelastic code over existing comprehensive rotorcraft codes include the exact modelling of the kinematics of the hub, the detailed modelling of the flexibility of critical hub components, and the possibility to simulate steady flight conditions as well as wind-up and maneuvers. The simulations described in the paper include (1) the analysis of the aeroelastic stability, with particular regard to the proprotor/pylon instability that is peculiar to tiltrotors, (2) the determination of the dynamic behavior of the system and of the loads due to typical maneuvers, with particular regard to the conversion from helicopter to airplane mode, and (3) the stress evaluation in critical components, such as the pitch links and the conversion downstop spring.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The purpose of this Note is to present results from an analytic/experimental study that investigated the potential for passively changing blade twist through the use of extension-twist coupling. A set of composite model rotor blades was manufactured from existing blade molds for a low-twist metal helicopter rotor blade, with a view toward establishing a preliminary proof concept for extension-twist-coupled rotor blades. Data were obtained in hover for both a ballasted and unballasted blade configuration in sea-level atmospheric conditions. Test data were compared with results obtained from a geometrically nonlinear analysis of a detailed finite element model of the rotor blade developed in MSC/NASTRAN.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 32; 7; p. 1549-1551
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: This study demonstrated the feasibility of passive blade twist control for composite rotor blades. Hover testing of the set of blades produced maximum twist changes of 2.54 degrees for the unballasted blade configuration and 5.24 degrees for the ballasted blade configuration. These results compared well with those obtained from a detailed finite element analysis model of the rotor blade, which yielded maximum twists of 3.02 and 5.61 degrees for the unballasted and ballasted blade configurations, respectively.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AIAA Journal (ISSN 0001-1452); 32; 7; p. 1549-1551
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-02
    Description: The paper describes the aeroelastic analysis of a tiltrotor configuration. The 1/5 scale wind tunnel semispan model of the V-22 tiltrotor aircraft is considered. The analysis is performed by means of a multi-body code, based on an original formulation. The differential equilibrium problem is stated in terms of first order differential equations. The equilibrium equations of every rigid body are written, together with the definitions of the momenta. The bodies are connected by kinematic constraints, applied in form of Lagrangian multipliers. Deformable components are mainly modelled by means of beam elements, based on an original finite volume formulation. Multi-disciplinar problems can be solved by adding user-defined differential equations. In the presented analysis the equations related to the control of the swash-plate of the model are considered. Advantages of a multi-body aeroelastic code over existing comprehensive rotorcraft codes include the exact modelling of the kinematics of the hub, the detailed modelling of the flexibility of critical hub components, and the possibility to simulate steady flight conditions as well as wind-up and maneuvers. The simulations described in the paper include: 1) the analysis of the aeroelastic stability, with particular regard to the proprotor/pylon instability that is peculiar to tiltrotors, 2) the determination of the dynamic behavior of the system and of the loads due to typical maneuvers, with particular regard to the conversion from helicopter to airplane mode, and 3) the stress evaluation in critical components, such as the pitch links and the conversion downstop spring.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The paper presents a multi-body analysis of the 1/5 scale wind tunnel model of the V-22 tiltrotor, the Wing and Rotor Aeroelastic Testing System (WRATS), currently tested at NASA Langley Research Center. An original multi-body formulation has been developed at the Dipartimento di Ingegneria Aerospaziale of the Politecnico di Milano, Italy. It is based on the direct writing of the equilibrium equations of independent rigid bodies, connected by kinematic constraints that result in the addition of algebraic constraint equations, and by dynamic constraints, that directly contribute to the equilibrium equations. The formulation has been extended to the simultaneous solution of interdisciplinary problems by modeling electric and hydraulic networks, for aeroservoelastic problems. The code has been tailored to the modeling of rotorcrafts while preserving a complete generality. A family of aerodynamic elements has been introduced to model high aspect aerodynamic surfaces, based on the strip theory, with quasi-steady aerodynamic coefficients, compressibility, post-stall interpolation of experimental data, dynamic stall modeling, and radial flow drag. Different models for the induced velocity of the rotor can be used, from uniform velocity to dynamic in flow. A complete dynamic and aeroelastic analysis of the model of the V-22 tiltrotor has been performed, to assess the validity of the formulation and to exploit the unique features of multi-body analysis with respect to conventional comprehensive rotorcraft codes; These are the ability to model the exact kinematics of mechanical systems, and the possibility to simulate unusual maneuvers and unusual flight conditions, that are particular to the tiltrotor, e.g. the conversion maneuver. A complete modal validation of the analytical model has been performed, to assess the ability to reproduce the correct dynamics of the system with a relatively coarse beam model of the semispan wing, pylon and rotor. Particular care has been used to model the kinematics of the gimbal joint, that characterizes the rotor hub, and of the control system, consisting in the entire swashplate mechanism. The kinematics of the fixed and the rotating plates have been modeled, with variable length control links used to input the controls, the rotating flexible links, the pitch horns and the pitch bearings. The investigations took advantage of concurring wind tunnel test runs, that were performed in August 1998, and allowed the acquisition of data specific to the multi-body analysis.
    Keywords: Aircraft Design, Testing and Performance
    Type: American Helicopter Society 55th Annual FOrum; May 25, 1999 - May 27, 1999; Montreal, Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The feasibility of passive blade twist control using an extension-twist-coupled composite rotor blade design has been demonstrated. A set of low-twist model-scale helicopter rotor blades has been manufactured from existing molds with the objective of demonstrating this control concept. Hover testing of the set of blades demonstrated maximum twist changes of 5.24 deg for the ballasted blade configuration, and 2.54 deg for the unballasted configurations in the atmospheric test condition. These results compared well with those obtained from a detailed FEM analysis of the rotor blade. Aerodynamic-induced effects on the blade elastic twist were found to be minimal.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AIAA PAPER 92-2468 , AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 13, 1992 - Apr 15, 1992; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...