ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2013-10-08
    Description: Synthetic acid tolerance, especially during active cell growth, is a desirable phenotype for many biotechnological applications. Natively, acid resistance in Escherichia coli is largely a stationary-phase phenotype attributable to mechanisms mostly under the control of the stationary-phase sigma factor RpoS. We show that simultaneous overexpression of noncoding small RNAs (sRNAs), DsrA, RprA and ArcZ, which are translational RpoS activators, increased acid tolerance (based on a low-pH survival assay) supra-additively up to 8500-fold during active cell growth, and provided protection against carboxylic acid and oxidative stress. Overexpression of rpoS without its regulatory 5'-UTR resulted in inferior acid tolerance. The supra-additive effect of overexpressing the three sRNAs results from the impact their expression has on RpoS-protein levels, and the beneficial perturbation of the interconnected RpoS and H-NS networks, thus leading to superior tolerance during active growth. Unlike the overexpression of proteins, overexpression of sRNAs imposes hardly any metabolic burden on cells, and constitutes a more effective strain engineering strategy.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-27
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: BACKGROUND: As a medical emergency that can affect even well-screened, healthy individuals, peritonitis developing during a long-duration space exploration mission may dictate deviation from traditional clinical practice due to the absence of otherwise indicated surgical capabilities. Medical management can treat many intra-abdominal processes, but treatment failures are inevitable. In these circumstances, percutaneous aspiration under sonographic guidance could provide a "rescue" strategy. Hypothesis: Sonographically guided percutaneous aspiration of intra-peritoneal fluid can be performed in microgravity. METHODS: Investigations were conducted in the microgravity environment of NASA's KC-135 research aircraft (0 G). The subjects were anesthetized female Yorkshire pigs weighing 50 kg. The procedures were rehearsed in a terrestrial animal lab (1 G). Colored saline (500 mL) was introduced through an intra-peritoneal catheter during flight. A high-definition ultrasound system (HDI-5000, ATL, Bothell, WA) was used to guide a 16-gauge needle into the peritoneal cavity to aspirate fluid. RESULTS: Intra-peritoneal fluid collections were easily identified, distinct from surrounding viscera, and on occasion became more obvious during weightless conditions. Subjectively, with adequate restraint of the subject and operators, the procedure was no more demanding than during the 1-G rehearsals. CONCLUSIONS: Sonographically guided percutaneous aspiration of intra-peritoneal fluid collections is feasible in weightlessness. Treatment of intra-abdominal inflammatory conditions in spaceflight might rely on pharmacological options, backed by sonographically guided percutaneous aspiration for the "rescue" of treatment failures. While this risk mitigation strategy cannot guarantee success, it may be the most practical option given severe resource limitations.
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 73; 9; 925-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Pneumothorax is commonly seen in trauma patients; the diagnosis is usually confirmed by radiography. Use of ultrasound for this purpose, in environments such as space flight and remote terrestrial areas where radiographic capabilities are absent, is being investigated by NASA. In this study, the ability of ultrasound to assess the magnitude of pneumothorax in a porcine model was evaluated. Sonography was performed on anesthetized pigs (avg. wt. 50 kg) in both ground-based laboratory (n = 5) and micro gravity conditions (0 g) aboard the KC-135 aircraft during parabolic flight (n = 4). Aliquots of air (50-1 OOcc) were introduced into the chest through a catheter to simulate pneumothorax. Results were video-recorded and digitized for later interpretation by radiologists. Several distinct sonographic patterns of partial lung sliding were noted, including the combination of a sliding zone with a still zone, and a "segmented" sliding zone. These "partial lung sliding" patterns exclude massive pneumothorax manifested by a complete separation of the lung from the parietal pleura. In 0 g, the sonographic picture was more diverse; 1 g differences between posterior and anterior aspects were diminished. CONCLUSIONS: Modest pneumothorax can be inferred by the ultrasound sign of "partial lung sliding". This finding, which increases the negative predictive value of thoracic ultrasound, may be attributed to intermittent pleural contact, small air spaces, or alterations in pleural lubricant. Further studies of these phenomena are warranted.
    Keywords: Aerospace Medicine
    Type: JSC-CN-6133 , Midwest Surgical Association conference; Aug 13, 2000 - Aug 16, 2000; MI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...