ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1207-1216 
    ISSN: 0887-6266
    Keywords: latexes ; platinum nanoparticles ; catalytic activities ; protective polymers ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Several latex dispersions of different hydrophobicity were investigated with respect to their ability to adsorb platinum nanoparticles that had been reduced in their presence. Two reduction methods were tested, specifically the slower method of refluxing the alcoholic solutions and the more rapid method of reaction with KBH4. The immobilization of the metal particles and their nanosize dimensions were demonstrated by transmission electron microscopy, and their catalytic activity was tested by the hydrogenation of cyclohexene as a model reaction. Some additional immobilized platinum nanoparticles were prepared in the presence of various protective polymers. This can lead to various advantages with respect to, for instance, the stability and the catalytic properties of these materials. Even in the presence of such additional protective polymers, the platinum nanoparticles remained immobilized for some of the hydrophobic latexes both before and after catalytic hydrogenations. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1207-1216, 1997
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 35 (1997), S. 3151-3160 
    ISSN: 0887-624X
    Keywords: nanocatalysts ; colloids ; polyelectrolytes ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Several palladium and platinum nanocatalysts protected by cationic polyelectrolytes were prepared by the in-situ reduction of palladium chloride, PdCl2, and dihydrogen hexachloroplatinate, H2PtCl6. The particle sizes and size distributions were determined by transmission electron microscopy, and the colloids were further characterized by UV-vis spectroscopy. The catalytic activity of these nanoparticles was qualitatively investigated by the hydrogenation and conversion of cyclohexene as a model reaction and compared to palladium and platinum colloids protected by a selection of water-soluble, nonionic polymers. The results show that the catalytic activity is strongly influenced by the protective polymer chosen, as well as particle size and morphology. The use of cationic polyelectrolytes decreases the catalytic activities significantly, in comparison to several water-soluble, nonionic polymers investigated. The effects depend strongly on the particular metal, as illustrated in this case by differences observed between palladium and platinum. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3151-3160, 1997
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-08-07
    Print ISSN: 0897-4756
    Electronic ISSN: 1520-5002
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...