ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 95 (1991), S. 1572-1576 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 659-661 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: X-ray reflectivity (XRR) is commonly used to measure the thickness, density, and roughness of thin films. XRR can be used on multilayered films, however the data analysis then involves a complex fit. Such fits display many local minima for stacks of more than two layers. It is shown how the modulated diffuse scattering arising from the correlated roughness effect can sometimes be used to measure the thickness of the top film in the stack, hence reducing the size of the parameter space to be searched. Data for three- and four-layer stacks will be presented. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 62 (1991), S. 839-840 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We describe a method of making samples of concentrated materials for use in fluorescence EXAFS (extended x-ray absorption fine structure) measurements. With this technique, one can easily make samples of a given areal density, with fine particle sizes. Both of these qualities are necessary in order to insure that self-absorption will not cause distortions in the fluorescence spectrum. These samples are also suitable for transmission measurements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 82 (1997), S. 3821-3827 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have used x-ray absorption spectroscopy to study the formation and dissolution of θ-Al2Cu precipitates in blanket Al-Cu films. In one series of experiments, we examined films deposited at different temperatures and average Cu concentrations. For a given temperature, there is a Cu concentration above which precipitates form. This effective solvus agrees with the equilibrium solvus at high temperatures, but exceeds the equilibrium values at low deposition temperatures. The formation of precipitates correlates with a pileup of Cu in the part of the film which was deposited first. This pileup is explained by a model involving precipitate growth at grain boundaries and grain growth during deposition. We also measured the kinetics of precipitation formation and dissolution in Al−0.5 w/o Cu. In the range 200–270 °C, the precipitation kinetics show an activation energy of 0.54 eV, which is lower than that for grain-boundary diffusion of Cu in Al. Precipitate dissolution over the range 300–400 °C shows an activation energy of 1.37 eV, consistent with lattice diffusion. These results may be useful in designing heat treatments which will minimize the occurrence of precipitates in integrated-circuit interconnects when process corrosion could be a problem, yet leave the material with precipitates before use, when electromigration becomes an issue. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 209–212, doi:10.5670/oceanog.2012.19.
    Description: The global mid-ocean ridge (MOR) system is a 60,000 km submarine volcanic mountain range that crosses all of the major ocean basins on Earth. Along the MOR, subseafloor seawater circulation exchanges heat and elements between the oceanic crust and seawater. One of the elements released through this venting process is iron. The amount of iron released by hydrothermal venting to the ocean per year (called a flux) is similar in magnitude to that in global riverine runoff (Elderfield and Schultz, 1996). Until recently, measurements and modeling activities to understand the contribution of hydrothermal iron to the ocean budget have been largely neglected. It was thought that hydrothermal iron was removed completely from seawater by precipitation of iron-bearing minerals within plumes and then deposited at the seafloor close to vent sites. With this assumption in place, the contribution of hydrothermal fluxes to the ocean budget was considered negligible. Recent work, however, questions the validity of that assumption, and leads to what we call the "leaky vent" hypothesis. Our goal is to measure the forms of iron, known as speciation, present in hydrothermal plume particles to better understand the bioavailability, geochemical reactivity, and transport properties of hydrothermal iron in the ocean.
    Description: We thank the Woods Hole Oceanographic Institution Deep Ocean Exploration Institute, the National Science Foundation Ridge 2000 Program, and the Gordon and Betty Moore Foundation for funding.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Environmental Chemistry 11 (2014): 10-17, doi:10.1071/EN13075.
    Description: It is a well known truism that natural materials are inhomogeneous, so analysing them on a point-by-point basis can generate a large volume of data, from which it becomes challenging to extract understanding. In this paper, we show an example in which particles taken from the ocean in two different regions (the Western Subarctic Pacific and the Australian sector of the Southern Ocean, south of Tasmania) are studied by Fe K-edge micro X-ray absorption near-edge spectroscopy (μXANES). The resulting set of data consists of 209 spectra from the Western Subarctic Pacific and 126 from the Southern Ocean. We show the use of principal components analysis with an interactive projection visualisation tool to reduce the complexity of the data to something manageable. The Western Subarctic Pacific particles were grouped into four main populations, each of which was characterised by spectra consistent with mixtures of 1–3 minerals: (1) Fe3+ oxyhydroxides + Fe3+ clays + Fe2+ phyllosilicates, (2) Fe3+ clays, (3) mixed-valence phyllosilicates and (4) magnetite + Fe3+ clays + Fe2+ silicates, listed in order of abundance. The Southern Ocean particles break into three clusters: (1) Fe3+-bearing clays + Fe3+ oxyhydroxides, (2) Fe2+ silicates + Fe3+ oxyhydroxides and (3) Fe3+ oxides + Fe3+-bearing clays + Fe2+ silicates, in abundance order. Although there was some overlap between the two regions, this analysis shows that the particulate Fe mineral assemblage is distinct between the Western Subarctic Pacific and the Southern Ocean, with potential implications for the bioavailability of particulate Fe in these two iron-limited regions. We then discuss possible advances in the methods, including automatic methods for characterising the structure of the data.
    Description: The operations of the Advanced Light Source at Lawrence Berkeley National Laboratory are supported by the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy under contract number DE-AC02-05CH11231. Collection of samples for the VERTIGO project was supported by the US National Science Foundation Program in Chemical Oceanography to Ken Buesseler and the US Department of Energy, Office of Science, Biological and Environmental Research Program to Jim Bishop. The SAZ-SENSE project was supported by the Australian Government Cooperative Research Centres Programme. Collection of spectroscopic data by PJL was supported through the WHOI Postdoctoral Scholar Program, WHOI Independent Study Award and NSF Chemical Oceanography.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 20 (2006): GB1006, doi:10.1029/2005GB002557.
    Description: Heightened biological activity was observed in February 1996 in the high-nutrient low-chlorophyll (HNLC) subarctic North Pacific Ocean, a region that is thought to be iron-limited. Here we provide evidence supporting the hypothesis that Ocean Station Papa (OSP) in the subarctic Pacific received a lateral supply of particulate iron from the continental margin off the Aleutian Islands in the winter, coincident with the observed biological bloom. Synchrotron X-ray analysis was used to describe the physical form, chemistry, and depth distributions of iron in size fractionated particulate matter samples. The analysis reveals that discrete micron-sized iron-rich hot spots are ubiquitous in the upper 200 m at OSP, more than 900 km from the closest coast. The specifics of the chemistry and depth profiles of the Fe hot spots trace them to the continental margins. We thus hypothesize that iron hot spots are a marker for the delivery of iron from the continental margin. We confirm the delivery of continental margin iron to the open ocean using an ocean general circulation model with an iron-like tracer source at the continental margin. We suggest that iron from the continental margin stimulated a wintertime phytoplankton bloom, partially relieving the HNLC condition.
    Description: This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (KP1202030) to J. K. B and by NSFATM-9987457 to I. F. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under contract DE-AC03-76SF00098.
    Keywords: Iron ; Continental margin ; HNLC ; Subarctic Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/tiff
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 24 (2010): GB4017, doi:10.1029/2010GB003794.
    Description: Organobromine (Brorg) compounds, commonly recognized as persistent, toxic anthropogenic pollutants, are also produced naturally in terrestrial and marine systems. Several enzymatic and abiotic bromination mechanisms have been identified, as well as an array of natural Brorg molecules associated with various marine organisms. The fate of the carbon-bromine functionality in the marine environment, however, remains largely unexplored. Oceanographic studies have noted an association between bromine (Br) and organic carbon (Corg) in marine sediments. Even so, there has been no direct chemical evidence that Br in the sediments exists in a stable form apart from inorganic bromide (Brinorg), which is widely presumed conservative in marine systems. To investigate the scope of natural Brorg production and its fate in the environment, we probed Br distribution and speciation in estuarine and marine sediments using in situ X-ray spectroscopy and spectromicroscopy. We show that Brorg is ubiquitous throughout diverse sedimentary environments, occurring in correlation with Corg and metals such as Fe, Ca, and Zn. Analysis of sinking particulate carbon from the seawater column links the Brorg observed in sediments to biologically produced Brorg compounds that persist through humification of natural organic matter (NOM). Br speciation varies with sediment depth, revealing biogeochemical cycling of Br between organic and inorganic forms as part of the burial and degradation of NOM. These findings illuminate the chemistry behind the association of Br with Corg in marine sediments and cast doubt on the paradigmatic classification of Br as a conservative element in seawater systems.
    Description: This investigation was funded by the U.S. Department of Energy, Office of Basic Energy Sciences (DOE‐BES) Chemical and Geosciences Programs, the National Science Foundation (NSF) Chemical Sciences Program, and an NSF Graduate Research Fellowship (ACL). Use of the ALS was supported by the DOE‐BES Materials Sciences Division under contract DE‐AC03‐ 76SF00098. Use of the SSRL, a national user facility operated by Stanford University, was supported by the DOE‐BES. Use of the NSLS was supported by the DOE‐BES under contract DE‐AC02‐98CH10886. Portions of this work were performed at beamline X26A at the NSLS. Beamline X26A is supported by the DOE‐Geosciences (DE‐FG02‐92ER14244 to the University of Chicago–CARS) and DOE Office of Biological and Environmental Research, Environmental Remediation Sciences Division (DE‐FC09‐96‐SR18546 to the University of Georgia).
    Keywords: Bromine cycle ; Organobromine ; Bromination ; Bromide ; Marine sediment ; Debromination
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-08-28
    Description: Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene–Eocene Thermal Maximum that occurred 56 Mya.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...