ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-04-06
    Description: The conserved Sir2 family of proteins has protein deacetylase activity that is dependent on NAD (the oxidized form of nicotinamide adenine dinucleotide). Although histones are one likely target for the enzymatic activity of eukaryotic Sir2 proteins, little is known about the substrates and roles of prokaryotic Sir2 homologs. We reveal that an archaeal Sir2 homolog interacts specifically with the major archaeal chromatin protein, Alba, and that Alba exists in acetylated and nonacetylated forms. Furthermore, we show that Sir2 can deacetylate Alba and mediate transcriptional repression in a reconstituted in vitro transcription system. These data provide a paradigm for how Sir2 family proteins influence transcription and suggest that modulation of chromatin structure by acetylation arose before the divergence of the archaeal and eukaryotic lineages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, Stephen D -- Botting, Catherine H -- Wardleworth, Benjamin N -- Jackson, Stephen P -- White, Malcolm F -- New York, N.Y. -- Science. 2002 Apr 5;296(5565):148-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Cancer Cell Unit, The Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 2QH, UK. sdb@mole.bio.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11935028" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Archaeal Proteins/*chemistry/*metabolism ; Chromatin/*metabolism ; DNA/metabolism ; Gene Expression Regulation, Archaeal ; Histone Deacetylases/chemistry/*metabolism ; Molecular Sequence Data ; Molecular Weight ; Protein Binding ; Recombinant Fusion Proteins/chemistry/metabolism ; *Silent Information Regulator Proteins, Saccharomyces cerevisiae ; Sirtuin 2 ; Sirtuins ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Sulfolobus/*chemistry/genetics/metabolism ; Templates, Genetic ; Trans-Activators/chemistry/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-02-02
    Description: Tumor necrosis factor-alpha (TNF-alpha) is an important mediator of insulin resistance in obesity and diabetes through its ability to decrease the tyrosine kinase activity of the insulin receptor (IR). Treatment of cultured murine adipocytes with TNF-alpha was shown to induce serine phosphorylation of insulin receptor substrate 1 (IRS-1) and convert IRS-1 into an inhibitor of the IR tyrosine kinase activity in vitro. Myeloid 32D cells, which lack endogenous IRS-1, were resistant to TNF-alpha-mediated inhibition of IR signaling, whereas transfected 32D cells that express IRS-1 were very sensitive to this effect of TNF-alpha. An inhibitory form of IRS-1 was observed in muscle and fat tissues from obese rats. These results indicate that TNF-alpha induces insulin resistance through an unexpected action of IRS-1 to attenuate insulin receptor signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hotamisligil, G S -- Peraldi, P -- Budavari, A -- Ellis, R -- White, M F -- Spiegelman, B M -- DK 42539/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1996 Feb 2;271(5249):665-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Boston, MA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8571133" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/*metabolism ; Adipose Tissue/metabolism ; Animals ; Cells, Cultured ; Insulin/pharmacology ; Insulin Receptor Substrate Proteins ; Insulin Resistance/*physiology ; Male ; Mice ; Muscle, Skeletal/metabolism ; Obesity/*metabolism ; Phosphoproteins/metabolism/*physiology ; Phosphorylation ; Rats ; Rats, Zucker ; Receptor, Insulin/*antagonists & inhibitors/metabolism ; Serine/metabolism ; Signal Transduction ; Tumor Necrosis Factor-alpha/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-05-02
    Description: Single-strand DNA (ssDNA)-binding proteins (SSBs) are ubiquitous and essential for a wide variety of DNA metabolic processes, including DNA replication, recombination, DNA damage detection and repair. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating nucleases, helicases and strand-exchange proteins, activating transcription and mediating protein-protein interactions. In eukaryotes, the major SSB, replication protein A (RPA), is a heterotrimer. Here we describe a second human SSB (hSSB1), with a domain organization closer to the archaeal SSB than to RPA. Ataxia telangiectasia mutated (ATM) kinase phosphorylates hSSB1 in response to DNA double-strand breaks (DSBs). This phosphorylation event is required for DNA damage-induced stabilization of hSSB1. Upon induction of DNA damage, hSSB1 accumulates in the nucleus and forms distinct foci independent of cell-cycle phase. These foci co-localize with other known repair proteins. In contrast to RPA, hSSB1 does not localize to replication foci in S-phase cells and hSSB1 deficiency does not influence S-phase progression. Depletion of hSSB1 abrogates the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets after ionizing radiation. Cells deficient in hSSB1 exhibit increased radiosensitivity, defective checkpoint activation and enhanced genomic instability coupled with a diminished capacity for DNA repair. These findings establish that hSSB1 influences diverse endpoints in the cellular DNA damage response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Richard, Derek J -- Bolderson, Emma -- Cubeddu, Liza -- Wadsworth, Ross I M -- Savage, Kienan -- Sharma, Girdhar G -- Nicolette, Matthew L -- Tsvetanov, Sergie -- McIlwraith, Michael J -- Pandita, Raj K -- Takeda, Shunichi -- Hay, Ronald T -- Gautier, Jean -- West, Stephen C -- Paull, Tanya T -- Pandita, Tej K -- White, Malcolm F -- Khanna, Kum Kum -- CA10445/CA/NCI NIH HHS/ -- CA123232/CA/NCI NIH HHS/ -- CA92245/CA/NCI NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2008 May 29;453(7195):677-81. doi: 10.1038/nature06883. Epub 2008 Apr 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Signal Transduction Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18449195" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia Mutated Proteins ; Cell Cycle/drug effects/radiation effects ; Cell Cycle Proteins/metabolism ; *DNA Repair/radiation effects ; DNA-Binding Proteins/antagonists & inhibitors/genetics/*metabolism ; *Genomic Instability/radiation effects ; HeLa Cells ; Humans ; Mitochondrial Proteins ; Phosphorylation ; Protein Transport/radiation effects ; Protein-Serine-Threonine Kinases/metabolism ; Radiation, Ionizing ; Signal Transduction/drug effects/radiation effects ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-04-24
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982719/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982719/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zaret, Kenneth S -- White, Morris F -- R01 DK055326/DK/NIDDK NIH HHS/ -- England -- Nature. 2010 Apr 22;464(7292):1132-3. doi: 10.1038/4641132a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20414295" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Death/drug effects ; Cell Differentiation/*physiology ; Cell Lineage ; Cell Proliferation ; Cell Transdifferentiation/*physiology ; Diabetes Mellitus, Type 1/pathology/therapy ; Diphtheria Toxin/pharmacology/toxicity ; Glucagon/biosynthesis/secretion ; Glucagon-Secreting Cells/*cytology/metabolism/secretion ; Humans ; Insulin/biosynthesis/pharmacology/secretion ; Insulin-Secreting Cells/*cytology/drug effects/metabolism/secretion ; Mice ; Mice, Transgenic ; Regeneration/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-12-06
    Description: The signaling pathways used by insulin have been identified [M. White, Insulin Signaling Pathway, Sci. STKE (Connections Map, as seen November 2003), http://stke.sciencemag.org/cgi/cm/cmp_12069]. Now our challenge is to understand how the failure of these signals is associated with obesity and the progressive failure of pancreatic beta cells that leads to diabetes. Whether better management of chronic inflammation can improve insulin action is an important area of investigation. Drugs that stimulate IRS2 (insulin receptor substrate protein 2) synthesis or signaling might be a good starting point. This knowledge will lead to rational strategies that prevent or cure diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉White, Morris F -- New York, N.Y. -- Science. 2003 Dec 5;302(5651):1710-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Place, Boston, MA 02215, USA. morris.white@joslin.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14657487" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytokines/metabolism ; Diabetes Mellitus/etiology/*metabolism ; Diabetes Mellitus, Type 1/etiology/metabolism ; Diabetes Mellitus, Type 2/etiology/metabolism ; Humans ; Inflammation ; Insulin/*metabolism ; Insulin Receptor Substrate Proteins ; *Insulin Resistance ; Intracellular Signaling Peptides and Proteins ; Islets of Langerhans/metabolism ; Mice ; Models, Biological ; Obesity/etiology/*metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Receptor, Insulin/genetics/metabolism ; *Signal Transduction ; Somatomedins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉White, Morris F -- P50 GM021700/GM/NIGMS NIH HHS/ -- R01 DK098655/DK/NIDDK NIH HHS/ -- England -- Nature. 2015 Aug 13;524(7564):170-1. doi: 10.1038/524170a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26268188" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila melanogaster/*metabolism ; *Longevity ; *MAP Kinase Signaling System
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-07-21
    Description: Reduced insulin-like signaling extends the life span of Caenorhabditis elegans and Drosophila. Here, we show that, in mice, less insulin receptor substrate-2 (Irs2) signaling throughout the body or just in the brain extended life span up to 18%. At 22 months of age, brain-specific Irs2 knockout mice were overweight, hyperinsulinemic, and glucose intolerant; however, compared with control mice, they were more active and displayed greater glucose oxidation, and during meals they displayed stable superoxide dismutase-2 concentrations in the hypothalamus. Thus, less Irs2 signaling in aging brains can promote healthy metabolism, attenuate meal-induced oxidative stress, and extend the life span of overweight and insulin-resistant mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taguchi, Akiko -- Wartschow, Lynn M -- White, Morris F -- DK38712/DK/NIDDK NIH HHS/ -- DK55326/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2007 Jul 20;317(5836):369-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17641201" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Brain/*metabolism ; Circadian Rhythm ; Crosses, Genetic ; Diet ; Female ; Glucose/*metabolism ; *Homeostasis ; Insulin Receptor Substrate Proteins ; Insulin Resistance ; Intracellular Signaling Peptides and Proteins/*metabolism ; *Longevity ; Male ; Mice ; Mice, Knockout ; Mice, Transgenic ; Overweight ; Oxidation-Reduction ; Oxygen Consumption ; Phosphoproteins/*metabolism ; Respiration ; *Signal Transduction ; Superoxide Dismutase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Pharmacology 36 (1996), S. 615-658 
    ISSN: 0362-1642
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 48 (2003), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Archaea share many similarities with eukarya in their information processing pathways and have proven to be a useful model for studies of DNA replication and transcription, but DNA repair pathways are not well understood in archaea. Nucleotide Excision Repair (NER) deals with many bulky DNA lesions and involves over 30 proteins in eukarya. Archaeal NER has not been characterized biochemically, but homologues of the human repair nucleases XPF and XPG have been identified by homology searches. Crenarchaeal XPF proteins have a simplified domain structure, consisting of the C-terminal nuclease domain conserved   in   XPF   and   Mus81   but   lacking   the   N-terminal ‘helicase’ domain that is found in eukaryal and euryarchaeal sequences. Unexpectedly, Sulfolobus XPF is only active in the presence of the sliding clamp PCNA, which is a heterotrimer in this organism. Interactions with two of the three subunits of PCNA are mediated via a C-terminal interaction motif. The PCNA-XPF complex acts as a structure-specific nuclease on a similar range of DNA flap, bubble and junction substrates as the human protein, suggesting a fundamental conservation through billions of years of evolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...