ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    ISSN: 0009-2614
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-01
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-15
    Description: Measurements of large-scale structure are interpreted using theoretical predictions for the matter distribution, including potential impacts of baryonic physics. We constrain the feedback strength of baryons jointly with cosmology using weak lensing and galaxy clustering observables (3×2pt) of Dark Energy Survey (DES) Year 1 data in combination with external information from baryon acoustic oscillations (BAO) and Planck cosmic microwave background polarization. Our baryon modeling is informed by a set of hydrodynamical simulations that span a variety of baryon scenarios; we span this space via a Principal Component (PC) analysis of the summary statistics extracted from these simulations. We show that at the level of DES Y1 constraining power, one PC is sufficient to describe the variation of baryonic effects in the observables, and the first PC amplitude (Q1) generally reflects the strength of baryon feedback. With the upper limit of Q1 prior being bound by the Illustris feedback scenarios, we reach $sim 20{{ m per cent}}$ improvement in the constraint of $S_8=sigma _8(Omega _{ m m}/0.3)^{0.5}=0.788^{+0.018}_{-0.021}$ compared to the original DES 3×2pt analysis. This gain is driven by the inclusion of small-scale cosmic shear information down to 2.5′, which was excluded in previous DES analyses that did not model baryonic physics. We obtain $S_8=0.781^{+0.014}_{-0.015}$ for the combined DES Y1+Planck EE+BAO analysis with a non-informative Q1 prior. In terms of the baryon constraints, we measure $Q_1=1.14^{+2.20}_{-2.80}$ for DES Y1 only and $Q_1=1.42^{+1.63}_{-1.48}$ for DESY1+Planck EE+BAO, allowing us to exclude one of the most extreme AGN feedback hydrodynamical scenario at more than 2σ.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-06
    Description: National forest inventories (NFIs) are a reliable source for national forest measurements. However, they are usually not developed for linking with remotely sensed (RS) biomass information. There are increasing needs and opportunities to facilitate this link towards better global and national biomass estimation. Thus, it is important to study and understand NFI characteristics relating to their integration with space-based products; in particular for the tropics where NFIs are quite recent, less frequent, and partially incomplete in several countries. Here, we (1) assessed NFIs in terms of their availability, temporal distribution, and extent in 236 countries from FAO's Global Forest Resources Assessment (FRA) 2020; (2) compared national forest biomass estimates in 2018 from FRA and global space-based Climate Change Initiative (CCI) product in 182 countries considering NFI availability and temporality; and (3) analyzed the latest NFI design characteristics in 46 tropical countries relating to their integration with space-based biomass datasets. We observed significant NFI availability globally and multiple NFIs were mostly found in temperate and boreal countries while most of the single NFI countries (94 %) were in the tropics. The latest NFIs were more recent in the tropics and many countries (35) implemented NFIs from 2016 onwards. The increasing availability and update of NFIs create new opportunities for integration with space-based data at the national level. This is supported by the agreement we found between country biomass estimates for 2018 from FRA and CCI product, with a significantly higher correlation in countries with recent NFIs. We observed that NFI designs varied greatly in tropical countries. For example, the size of the plots ranged from 0.01 to 1 ha and more than three-quarters of the countries had smaller plots of ≤0.25 ha. The existing NFI designs could pose specific challenges for statistical integration with RS data in the tropics. Future NFI and space-based efforts should aim towards a more integrated approach taking advantage of both data streams to improve national estimates and help future data harmonization efforts. Regular NFI efforts can be expanded with the inclusion of some super-site plots to enhance data integration with currently available space-based applications. Issues related to cost implications versus improvements in the accuracy, timeliness, and sustainability of national forest biomass estimation should be further explored.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-06-19
    Description: Amazonian forests function as biomass and biodiversity reservoirs, contributing to climate change mitigation. While they continuously experience disturbance, the effect that disturbances have on biomass and biodiversity over time has not yet been assessed at a large scale. Here, we evaluate the degree of recent forest disturbance in Peruvian Amazonia and the effects that disturbance, environmental conditions and human use have on biomass and biodiversity in disturbed forests. We integrate tree-level data on aboveground biomass (AGB) and species richness from 1840 forest plots from Peru's National Forest Inventory with remotely sensed monitoring of forest change dynamics, based on disturbances detected from Landsat-derived Normalized Difference Moisture Index time series. Our results show a clear negative effect of disturbance intensity tree species richness. This effect was also observed on AGB and species richness recovery values towards undisturbed levels, as well as on the recovery of species composition towards undisturbed levels. Time since disturbance had a larger effect on AGB than on species richness. While time since disturbance has a positive effect on AGB, unexpectedly we found a small negative effect of time since disturbance on species richness. We estimate that roughly 15% of Peruvian Amazonian forests have experienced disturbance at least once since 1984, and that, following disturbance, have been increasing in AGB at a rate of 4.7 Mg ha−1 year−1 during the first 20 years. Furthermore, the positive effect of surrounding forest cover was evident for both AGB and its recovery towards undisturbed levels, as well as for species richness. There was a negative effect of forest accessibility on the recovery of species composition towards undisturbed levels. Moving forward, we recommend that forest-based climate change mitigation endeavours consider forest disturbance through the integration of forest inventory data with remote sensing methods.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-04-18
    Description: Above-ground biomass (AGB) is considered an essential climate variable that underpins our knowledge and information about the role of forests in mitigating climate change. The availability of satellite-based AGB and AGB change ( AGB) products has increased in recent years. Here we assessed the past decade net AGB derived from four recent global multi-date AGB maps: ESA-CCI maps, WRI-Flux model, JPL time series, and SMOS-LVOD time series. Our assessments explore and use different reference data sources with biomass re-measurements within the past decade. The reference data comprise National Forest Inventory (NFI) plot data, local AGB maps from airborne LiDAR, and selected Forest Resource Assessment country data from countries with well-developed monitoring capacities. Map to reference data comparisons were performed at levels ranging from 100 m to 25 km spatial scale. The comparisons revealed that LiDAR data compared most reasonably with the maps, while the comparisons using NFI only showed some agreements at aggregation levels 10 km. Regardless of the aggregation level, AGB losses and gains according to the map comparisons were consistently smaller than the reference data. Map-map comparisons at 25 km highlighted that the maps consistently captured AGB losses in known deforestation hotspots. The comparisons also identified several carbon sink regions consistently detected by all maps. However, disagreement between maps is still large in key forest regions such as the Amazon basin. The overall AGB map cross-correlation between maps varied in the range 0.11–0.29 (r). Reported AGB magnitudes were largest in the high-resolution datasets including the CCI map differencing (stock change) and Flux model (gain-loss) methods, while they were smallest according to the coarser-resolution LVOD and JPL time series products, especially for AGB gains. Our results suggest that AGB assessed from current maps can be biased and any use of the estimates should take that into account. Currently, AGB reference data are sparse especially in the tropics but that deficit can be alleviated by upcoming LiDAR data networks in the context of Supersites and GEO-Trees.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-25
    Description: National forest inventories (NFI) provide essential forest-related biomass and carbon information for country greenhouse gas (GHG) accounting systems. Several tropical countries struggle to execute their NFIs while the extent to which space-based global information on aboveground biomass (AGB) can support national GHG accounting is under investigation. We assess whether the use of a global AGB map as auxiliary information produces a gain in precision of subnational AGB estimates for the Peruvian Amazonia. We used model-assisted estimators with data from the country’s NFI and explored hybrid inferential techniques to account for the sources of uncertainty associated with the integration of remote sensing-based products and NFI plot data. Our results show that the selected global biomass map tends to overestimate AGB values across the Peruvian Amazonia. For most strata, directly using the map in its published form did not reduce the precision of AGB estimates. However, after calibrating the map using the NFI data, the precision of our map-assisted AGB estimates increased by up to 50% at stratum level and 20% at Amazonia level. We further demonstrate how different sources of uncertainties can be incorporated in the map-NFI integrated estimates. With the hybrid inferential analysis, we found that the small spatial support of the NFI plots compared to the remote sensing-based sample units of aggregated pixels (within block variability) contributed the most to the total uncertainty associated with the AGB estimates from our map-NFI integration. Uncertainties caused by measurement variability and allometric model prediction uncertainty were the second largest contributors. When these uncertainties were incorporated, the increase in precision of our calibrated map-assisted AGB estimates was negligible, probably hindered by the great contribution of the within block variability to our map-plot assessment. We developed a reproducible method that countries can build upon and further improve while the global biomass products continue to evolve and better characterize the AGB distribution under large biomass conditions. We encourage further cross-country case studies that reflect a wider range of AGB distributions, especially within humid tropical forests, to further assess the contribution of global biomass maps to (sub)national AGB estimates and finally GHG monitoring and reporting.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-09
    Description: Earth Observation data are uniquely positioned to estimate forest aboveground biomass density (AGBD) in accordance with the United Nations Framework Convention on Climate Change (UNFCCC) principles of 'transparency, accuracy, completeness, consistency and comparability'. However, the use of space-based AGBD maps for national-level reporting to the UNFCCC is nearly non-existent as of 2023, the end of the first global stocktake (GST). We conduct an evidence-based comparison of AGBD estimates from the NASA Global Ecosystem Dynamics Investigation and ESA Climate Change Initiative, describing differences between the products and National Forest Inventories (NFIs), and suggesting how science teams must align efforts to inform the next GST. Between the products, in the tropics, the largest differences in estimated AGBD are primarily in the Congolese lowlands and east/southeast Asia. Where NFI data were acquired (Peru, Mexico, Lao PDR and 30 regions of Spain), both products show strong correlation to NFI-estimated AGBD, with no systematic deviations. The AGBD-richest stratum of these, the Peruvian Amazon, is accurately estimated in both. These results are remarkably promising, and to support the operational use of AGB map products for policy reporting, we describe targeted ways to align products with Intergovernmental Panel on Climate Change (IPCC) guidelines. We recommend moving towards consistent statistical terminology, and aligning on a rigorous framework for uncertainty estimation, supported by the provision of open-science codes for large-area assessments that comprehensively report uncertainty. Further, we suggest the provision of objective and open-source guidance to integrate NFIs with multiple AGBD products, aiming to enhance the precision of national estimates. Finally, we describe and encourage the release of user-friendly product documentation, with tools that produce AGBD estimates directly applicable to the IPCC guideline methodologies. With these steps, space agencies can convey a comparable, reliable and consistent message on global biomass estimates to have actionable policy impact.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...