ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2016-09-03
    Description: Hydraulic fracturing is a useful tool for enhancing rock mass permeability for shale gas development, enhanced geothermal systems, and geological carbon sequestration by the high-pressure injection of a fracturing fluid into tight reservoir rocks. Although significant advances have been made in hydraulic fracturing theory, experiments, and numerical modeling, when it comes to the complexity of geological conditions knowledge is still limited. Mechanisms of fluid injection-induced fracture initiation and propagation should be better understood to take full advantage of hydraulic fracturing. This paper presents the development and application of discrete particle modeling based on two-dimensional particle flow code (PFC2D). Firstly, it is shown that the modeled value of the breakdown pressure for the hydraulic fracturing process is approximately equal to analytically calculated values under varied in situ stress conditions. Furthermore, a series of simulations for hydraulic fracturing in competent rock was performed to examine the influence of the in situ stress ratio, fluid injection rate, and fluid viscosity on the borehole pressure history, the geometry of hydraulic fractures, and the pore-pressure field, respectively. It was found that the hydraulic fractures in an isotropic medium always propagate parallel to the orientation of the maximum principal stress. When a high fluid injection rate is used, higher breakdown pressure is needed for fracture propagation and complex geometries of fractures can develop. When a low viscosity fluid is used, fluid can more easily penetrate from the borehole into the surrounding rock, which causes a reduction of the effective stress and leads to a lower breakdown pressure. Moreover, the geometry of the fractures is not particularly sensitive to the fluid viscosity in the approximate isotropic model.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-22
    Description: Materials, Vol. 10, Pages 835: Investigation of the Quasi-Brittle Failure of Alashan Granite Viewed from Laboratory Experiments and Grain-Based Discrete Element Modeling Materials doi: 10.3390/ma10070835 Authors: Jian Zhou Luqing Zhang Duoxing Yang Anika Braun Zhenhua Han Granite is a typical crystalline material, often used as a building material, but also a candidate host rock for the repository of high-level radioactive waste. The petrographic texture—including mineral constituents, grain shape, size, and distribution—controls the fracture initiation, propagation, and coalescence within granitic rocks. In this paper, experimental laboratory tests and numerical simulations of a grain-based approach in two-dimensional Particle Flow Code (PFC2D) were conducted on the mechanical strength and failure behavior of Alashan granite, in which the grain-like structure of granitic rock was considered. The microparameters for simulating Alashan granite were calibrated based on real laboratory strength values and strain-stress curves. The unconfined uniaxial compressive test and Brazilian indirect tensile test were performed using a grain-based approach to examine and discuss the influence of mineral grain size and distribution on the strength and patterns of microcracks in granitic rocks. The results show it is possible to reproduce the uniaxial compressive strength (UCS) and uniaxial tensile strength (UTS) of Alashan granite using the grain-based approach in PFC2D, and the average mineral size has a positive relationship with the UCS and UTS. During the modeling, most of the generated microcracks were tensile cracks. Moreover, the ratio of the different types of generated microcracks is related to the average grain size. When the average grain size in numerical models is increased, the ratio of the number of intragrain tensile cracks to the number of intergrain tensile cracks increases, and the UCS of rock samples also increases with this ratio. However, the variation in grain size distribution does not have a significant influence on the likelihood of generated microcracks.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-02
    Description: Energies, Vol. 11, Pages 1413: Influence of Grain Size Heterogeneity and In-Situ Stress on the Hydraulic Fracturing Process by PFC2D Modeling Energies doi: 10.3390/en11061413 Authors: Zhenhua Han Jian Zhou Luqing Zhang A modified fluid-mechanically coupled algorithm in PFC2D was adopted in this article to study the influence of grain size heterogeneity and in-situ stress on hydraulic fracturing behavior. Simulated results showed that the in-situ stress and grain size heterogeneity significantly affect the initiation, growth, and spatial distribution of the hydraulic fractures: (1) the initiation and breakdown pressure are gradually reduced with the increase of the grain size heterogeneity; (2) with increased in-situ stress, the initiation and breakdown pressure increase, and the reduction effect of grain size heterogeneity on the breakdown pressure becomes more obvious; (3) in grain size homogeneous rock, the initiation pressure decreases with increasing in-situ stress ratio, however, the initiation pressure of grain size heterogeneous rock is almost unaffected by the in-situ stress ratio; (4) The in-situ stress ratio and grain size heterogeneity affect the spatial distribution of hydraulic fractures simultaneously. When the in-situ stress ratio is larger than 1, the hydraulic fractures propagate substantially along the direction of the maximum principal stress. When the in-situ stress ratio is 1, the initiation position and extension direction of hydraulic fractures are random and complex fracture networks can easily develop in a grain size homogeneous model.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-07-15
    Description: Hydraulic fracturing technology is usually used to stimulate tight gas reservoirs for increasing gas production. The stimulated volume depends in part on the pre-existing natural fractures in a reservoir. The mechanisms influencing the interaction between hydraulic fractures and natural fractures have to be well understood in order to achieve a successful application of hydraulic fracturing. In this paper, hydraulic fracturing simulations were performed based on a two-dimensional Particle Flow Code with an embedded Smooth Joint Model to investigate the interactions between hydraulic fractures and natural fractures and compare these against laboratory experimental results and analytical models. Firstly, the ability of the Smooth Joint Model to mimic the natural rock joints was validated. Secondly, the interactions between generated hydraulic fractures and natural fractures were simulated. Lastly, the influence of angle of approach, in situ differential stress, and the permeability of natural fractures was studied. It is found that the model is capable of simulating the variety of interactions between hydraulic fractures and natural fractures such as Crossed type, Arrested type and Dilated type, and the modeling examples agree well with the experimental results. Under high approach angles and high differential stresses, the hydraulic fractures tend to cross pre-existing natural fractures. Under contrary conditions, a hydraulic fracture is more likely to propagate along the natural fracture and re-initiate at a weak point or the tip of the natural fracture. Moreover, these numerical results are in good agreement compared with Blanton’s criterion. The variety of permeability of natural fractures has a great effect on their interactions, which should not be overlooked in hydraulic fracturing studies.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-04-01
    Print ISSN: 1365-1609
    Electronic ISSN: 1873-4545
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-02-01
    Print ISSN: 1006-9313
    Electronic ISSN: 1862-2801
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-02-01
    Print ISSN: 0304-3894
    Electronic ISSN: 1873-3336
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...