ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-17
    Description: The growth in global methane (CH4) concentration, which had been ongoing since the industrial revolution, stalled around the year 2000 before resuming globally in 2007. We evaluate the role of the hydroxyl radical (OH), the major CH4 sink, in the recent CH4 growth. We also examine the influence of systematic uncertainties in OH concentrations on CH4 emissions inferred from atmospheric observations. We use observations of 1,1,1-trichloroethane (CH3CCl3), which is lost primarily through reaction with OH, to estimate OH levels as well as CH3CC3 emissions, which have uncertainty that previously limited the accuracy of OH estimates. We find a 64–70% probability that a decline in OH has contributed to the post-2007 methane rise. Our median solution suggests that CH4 emissions increased relatively steadily during the late 1990s and early 2000s, after which growth was more modest. This solution obviates the need for a sudden statistically significant change in total CH4 emissions around the year 2007 to explain the atmospheric observations and can explain some of the decline in the atmospheric 13CH4/12CH4 ratio and the recent growth in C2H6. Our approach indicates that significant OH-related uncertainties in the CH4 budget remain, and we find that it is not possible to implicate, with a high degree of confidence, rapid global CH4 emissions changes as the primary driver of recent trends when our inferred OH trends and these uncertainties are considered.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-27
    Description: We infer global and regional emissions of five of the most abundant hydrofluorocarbons (HFCs) using atmospheric measurements from the Advanced Global Atmospheric Gases Experiment and the National Institute for Environmental Studies, Japan, networks. We find that the total CO2-equivalent emissions of the five HFCs from countries that are required to provide detailed, annual reports to the United Nations Framework Convention on Climate Change (UNFCCC) increased from 198 (175–221) Tg-CO2-eq⋅y–1 in 2007 to 275 (246–304) Tg-CO2-eq⋅y–1 in 2012. These global warming potential-weighted aggregated emissions agree well with those reported to the UNFCCC throughout this period and indicate that the gap between reported emissions and global HFC emissions derived from atmospheric trends is almost entirely due to emissions from nonreporting countries. However, our measurement-based estimates of individual HFC species suggest that emissions, from reporting countries, of the most abundant HFC, HFC-134a, were only 79% (63–95%) of the UNFCCC inventory total, while other HFC emissions were significantly greater than the reported values. These results suggest that there are inaccuracies in the reporting methods for individual HFCs, which appear to cancel when aggregated together.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-11
    Description: Emissions of methane (CH4) from tropical ecosystems, and how they respond to changes in climate, represent one of the biggest uncertainties associated with the global CH4 budget. Historically, this has been due to the dearth of pan-tropical in situ measurements, which is particularly acute in Africa. By virtue of their superior spatial coverage, satellite observations of atmospheric CH4 columns can help to narrow down some of the uncertainties in the tropical CH4 emission budget. We use proxy column retrievals of atmospheric CH4 (XCH4) from the Japanese Greenhouse gases Observing Satellite (GOSAT) and the nested version of the GEOS-Chem atmospheric chemistry and transport model (0.5∘×0.625∘) to infer emissions from tropical Africa between 2010 and 2016. Proxy retrievals of XCH4 are less sensitive to scattering due to clouds and aerosol than full physics retrievals, but the method assumes that the global distribution of carbon dioxide (CO2) is known. We explore the sensitivity of inferred a posteriori emissions to this source of systematic error by using two different XCH4 data products that are determined using different model CO2 fields. We infer monthly emissions from GOSAT XCH4 data using a hierarchical Bayesian framework, allowing us to report seasonal cycles and trends in annual mean values. We find mean tropical African emissions between 2010 and 2016 range from 76 (74–78) to 80 (78–82) Tg yr−1, depending on the proxy XCH4 data used, with larger differences in Northern Hemisphere Africa than Southern Hemisphere Africa. We find a robust positive linear trend in tropical African CH4 emissions for our 7-year study period, with values of 1.5 (1.1–1.9) Tg yr−1 or 2.1 (1.7–2.5) Tg yr−1, depending on the CO2 data product used in the proxy retrieval. This linear emissions trend accounts for around a third of the global emissions growth rate during this period. A substantial portion of this increase is due to a short-term increase in emissions of 3 Tg yr−1 between 2011 and 2015 from the Sudd in South Sudan. Using satellite land surface temperature anomalies and altimetry data, we find this increase in CH4 emissions is consistent with an increase in wetland extent due to increased inflow from the White Nile, although the data indicate that the Sudd was anomalously dry at the start of our inversion period. We find a strong seasonality in emissions across Northern Hemisphere Africa, with the timing of the seasonal emissions peak coincident with the seasonal peak in ground water storage. In contrast, we find that a posteriori CH4 emissions from the wetland area of the Congo Basin are approximately constant throughout the year, consistent with less temporal variability in wetland extent, and significantly smaller than a priori estimates.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-04-04
    Description: We present a method to derive atmospheric-observation-based estimates of carbon dioxide (CO2) fluxes at the national scale, demonstrated using data from a network of surface tall-tower sites across the UK and Ireland over the period 2013–2014. The inversion is carried out using simulations from a Lagrangian chemical transport model and an innovative hierarchical Bayesian Markov chain Monte Carlo (MCMC) framework, which addresses some of the traditional problems faced by inverse modelling studies, such as subjectivity in the specification of model and prior uncertainties. Biospheric fluxes related to gross primary productivity and terrestrial ecosystem respiration are solved separately in the inversion and then combined a posteriori to determine net ecosystem exchange of CO2. Two different models, Data Assimilation Linked Ecosystem Carbon (DALEC) and Joint UK Land Environment Simulator (JULES), provide prior estimates for these fluxes. We carry out separate inversions to assess the impact of these different priors on the posterior flux estimates and evaluate the differences between the prior and posterior estimates in terms of missing model components. The Numerical Atmospheric dispersion Modelling Environment (NAME) is used to relate fluxes to the measurements taken across the regional network. Posterior CO2 estimates from the two inversions agree within estimated uncertainties, despite large differences in the prior fluxes from the different models. With our method, averaging results from 2013 and 2014, we find a total annual net biospheric flux for the UK of 8±79 Tg CO2 yr−1 (DALEC prior) and 64±85 Tg CO2 yr−1 (JULES prior), where negative values represent an uptake of CO2. These biospheric CO2 estimates show that annual UK biospheric sources and sinks are roughly in balance. These annual mean estimates consistently indicate a greater net release of CO2 than the prior estimates, which show much more pronounced uptake in summer months.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-08-17
    Description: We describe the motivation, design, and execution of the Greenhouse gAs Uk and Global Emissions (GAUGE) project. The overarching scientific objective of GAUGE was to use atmospheric data to estimate the magnitude, distribution, and uncertainty of the UK greenhouse gas (GHG, defined here as CO2, CH4, and N2O) budget, 2013–2015. To address this objective, we established a multi-year and interlinked measurement and data analysis programme, building on an established tall-tower GHG measurement network. The calibrated measurement network comprises ground-based, airborne, ship-borne, balloon-borne, and space-borne GHG sensors. Our choice of measurement technologies and measurement locations reflects the heterogeneity of UK GHG sources, which range from small point sources such as landfills to large, diffuse sources such as agriculture. Atmospheric mole fraction data collected at the tall towers and on the ships provide information on sub-continental fluxes, representing the backbone to the GAUGE network. Additional spatial and temporal details of GHG fluxes over East Anglia were inferred from data collected by a regional network. Data collected during aircraft flights were used to study the transport of GHGs on local and regional scales. We purposely integrated new sensor and platform technologies into the GAUGE network, allowing us to lay the foundations of a strengthened UK capability to verify national GHG emissions beyond the project lifetime. For example, current satellites provide sparse and seasonally uneven sampling over the UK mainly because of its geographical size and cloud cover. This situation will improve with new and future satellite instruments, e.g. measurements of CH4 from the TROPOspheric Monitoring Instrument (TROPOMI) aboard Sentinel-5P. We use global, nested, and regional atmospheric transport models and inverse methods to infer geographically resolved CO2 and CH4 fluxes. This multi-model approach allows us to study model spread in a posteriori flux estimates. These models are used to determine the relative importance of different measurements to infer the UK GHG budget. Attributing observed GHG variations to specific sources is a major challenge. Within a UK-wide spatial context we used two approaches: (1) Δ14CO2 and other relevant isotopologues (e.g. δ13CCH4) from collected air samples to quantify the contribution from fossil fuel combustion and other sources, and (2) geographical separation of individual sources, e.g. agriculture, using a high-density measurement network. Neither of these represents a definitive approach, but they will provide invaluable information about GHG source attribution when they are adopted as part of a more comprehensive, long-term national GHG measurement programme. We also conducted a number of case studies, including an instrumented landfill experiment that provided a test bed for new technologies and flux estimation methods. We anticipate that results from the GAUGE project will help inform other countries on how to use atmospheric data to quantify their nationally determined contributions to the Paris Agreement.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-11-22
    Description: We present Δ14CO2 observations and related greenhouse gas measurements at a background site in Ireland (Mace Head, MHD) and a tall tower site in the east of the UK (Tacolneston, TAC) that is more strongly influenced by fossil fuel sources. These observations have been used to calculate the contribution of fossil fuel sources to the atmospheric CO2 mole fractions; this can be done, as emissions from fossil fuels do not contain 14CO2 and cause a depletion in the observed Δ14CO2 value. The observations are compared to simulated values. Two corrections need to be applied to radiocarbon-derived fossil fuel CO2 (ffCO2): one for pure 14CO2 emissions from nuclear industry sites and one for a disequilibrium in the isotopic signature of older biospheric emissions (heterotrophic respiration) and CO2 in the atmosphere. Measurements at both sites were found to only be marginally affected by 14CO2 emissions from nuclear sites. Over the study period of 2014–2015, the biospheric correction and the correction for nuclear 14CO2 emissions were similar at 0.34 and 0.25 ppm ffCO2 equivalent, respectively. The observed ffCO2 at the TAC tall tower site was not significantly different from simulated values based on the EDGAR 2010 bottom-up inventory. We explored the use of high-frequency CO observations as a tracer of ffCO2 by deriving a constant ratio of CO enhancements to ffCO2 ratio for the mix of UK fossil fuel sources. This ratio was found to be 5.7 ppb ppm−1, close to the value predicted using inventories and the atmospheric model of 5.1 ppb ppm−1. The TAC site, in the east of the UK, was strategically chosen to be some distance from pollution sources so as to allow for the observation of well-integrated air masses. However, this distance from pollution sources and the large measurement uncertainty in 14CO2 lead to a large overall uncertainty in the ffCO2, being around 1.8 ppm compared to typical enhancements of 2 ppm.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2018-12-21
    Description: Chloroform contributes to the depletion of the stratospheric ozone layer. However, due to its short lifetime and predominantly natural sources, it is not included in the Montreal Protocol that regulates the production and uses of ozone-depleting substances. Atmospheric chloroform mole fractions were relatively stable or slowly decreased during 1990–2010. Here we show that global chloroform mole fractions increased after 2010, based on in situ chloroform measurements at seven stations around the world. We estimate that the global chloroform emissions grew at the rate of 3.5% yr −1 between 2010 and 2015 based on atmospheric model simulations. We used two regional inverse modelling approaches, combined with observations from East Asia, to show that emissions from eastern China grew by 49 (41–59) Gg between 2010 and 2015, a change that could explain the entire increase in global emissions. We suggest that if chloroform emissions continuously grow at the current rate, the recovery of the stratospheric ozone layer above Antarctica could be delayed by several years. © 2018, The Author(s), under exclusive licence to Springer Nature Limited.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-22
    Description: Under the UK-focused Greenhouse gAs and Uk and Global Emissions (GAUGE) project, two new tall tower greenhouse gas (GHG) observation sites were established in the 2013/2014 Northern Hemispheric winter. These sites, located at existing telecommunications towers, utilized a combination of cavity ring-down spectroscopy (CRDS) and gas chromatography (GC) to measure key GHGs (CO2, CH4, CO, N2O and SF6). Measurements were made at multiple intake heights on each tower. CO2 and CH4 dry mole fractions were calculated from either CRDS measurements of wet air, which were post-corrected with an instrument-specific empirical correction, or samples dried to between 0.05 % H2O and 0.3 % H2O using a Nafion® dryer, with a smaller correction applied for the residual H2O. The impact of these two drying strategies was examined. Drying with a Nafion® dryer was not found to have a significant effect on the observed CH4 mole fraction; however, Nafion® drying did cause a 0.02 µmol mol−1 CO2 bias. This bias was stable for sample CO2 mole fractions between 373 and 514 µmol mol−1 and for sample H2O up to 3.5 %. As the calibration and standard gases are treated in the same manner, the 0.02 µmol mol−1 CO2 bias is mostly calibrated out with the residual error (≪0.01 µmol mol−1 CO2) well below the World Meteorological Organization (WMO) reproducibility requirements. Of more concern was the error associated with the empirical instrument-specific water correction algorithms. These corrections are relatively stable and reproducible for samples with H2O between 0.2 % and 2.5 %, CO2 between 345 and 449 µmol mol−1, and CH4 between 1743 and 2145 nmol mol−1. However, the residual errors in these corrections increase to 〉 0.05 µmol mol−1 for CO2 and 〉 1 nmol mol−1 for CH4 (greater than the WMO internal reproducibility guidelines) at higher humidities and for samples with very low (
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-06
    Description: As the second most populous country and third fastest growing economy, India has emerged as a global economic power. As such, its emissions of greenhouse and ozone-depleting gases are of global significance. However, unlike neighbouring China, the Indian sub-continent is very poorly monitored by atmospheric measurement networks. India's halocarbon emissions, here defined as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs) and chlorocarbons, are not well-known. Previous measurements from the region have been obtained at observatories many hundreds of kilometres from source regions, or at high altitudes, limiting their value for the estimation of regional emission rates. Given the projected rapid growth in demand for refrigerants and solvents in India, emission estimates of these halocarbons are urgently needed to provide a benchmark against which future changes can be evaluated. In this study, we report atmospheric-measurement-derived halocarbon emissions from India. With the exception of dichloromethane, these top-down estimates are the first for India's halocarbons. Air samples were collected at low altitude during an aircraft campaign in June and July 2016, and emissions were derived from measurements of these samples using an inverse modelling framework. These results were evaluated to assess India's progress in phasing out ozone-depleting substances under the Montreal Protocol. India's combined CFC emissions are estimated to be 54 (27–86) Tg CO2 eq. yr−1 (5th and 95th confidence intervals are shown in parentheses). HCFC-22 emissions of 7.8 (6.0–9.9) Gg yr−1 are of similar magnitude to emissions of HFC-134a (8.2 (6.1–10.7) Gg yr−1). We estimate India's HFC-23 emissions to be 1.2 (0.9–1.5) Gg yr−1, and our results are consistent with resumed venting of HFC-23 by HCFC-22 manufacturers following the discontinuation of funding for abatement under the Clean Development Mechanism. We report small emissions of HFC-32 and HFC-143a and provide evidence to suggest that HFC-32 emissions were primarily due to fugitive emissions during manufacturing processes. A lack of significant correlation among HFC species and the small emissions derived for HFC-32 and HFC-143a indicate that in 2016, India's use of refrigerant blends R-410A, R-404A and R-507A was limited, despite extensive consumption elsewhere in the world. We also estimate emissions of the regulated chlorocarbons carbon tetrachloride and methyl chloroform from northern and central India to be 2.3 (1.5–3.4) and 0.07 (0.04–0.10) Gg yr−1 respectively. While the Montreal Protocol has been successful in reducing emissions of many ozone-depleting substances, growth in the global emission rates of the unregulated very short-lived substances poses an ongoing threat to the recovery of the ozone layer. Emissions of dichloromethane are found to be 96.5 (77.8–115.6) Gg yr−1, and our estimate suggests a 5-fold increase in emissions since the last estimate derived from atmospheric data in 2008. We estimate perchloroethene emissions from India and chloroform emissions from northern–central India to be 2.9 (2.5–3.3) and 32.2 (28.3–37.1) Gg yr−1 respectively. Given the rapid growth of India's economy and the likely increase in demand for halocarbons such as HFCs, the implementation of long-term atmospheric monitoring in the region is urgently required. Our results provide a benchmark against which future changes to India's halocarbon emissions may be evaluated.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...