ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 99 (1977), S. 13-14 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 99 (1977), S. 6765-6766 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 100 (1978), S. 298-299 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 98 (1976), S. 7617-7620 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 96 (1992), S. 7771-7787 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have simulated the photodissociation of CH3Br adsorbed at a variety of surfaces. We have considered photodissociation at a smooth LiF (001) substrate and at three rough LiF surfaces which were constructed by removing atoms from the smooth surface. We have also considered photodissociation from several surfaces which have the same structure as the β phase of solid CH3Br to simulate dissociation from high coverages of the adsorbate where CH3Br ice is formed. The simulations were performed using the stochastic classical trajectory method. The asymptotic photofragment kinetic energy and angular distributions were determined and compared with the experimental results of Harrison et al. [J. Chem Phys. 89, 1475 (1988)] and Tabares et al. [J. Chem. Phys. 86, 738 (1987)]. When CH3Br is oriented with CH3 toward a surface, the CH3 kinetic energy distributions are shifted to much lower energies due to energy loss from multiple collisions with Br and the surface; the angular distributions are also significantly broadened. Much of the energy loss in these collisions goes into the translational mode of the Br fragments, causing the Br kinetic energy distributions to have a high-energy tail. When the molecule is in this orientation in a restricted geometry, collisions from the CH3 fragment lead to more effective energy transfer causing the peak of the Br kinetic energy distributions to be shifted to much higher energies and the corresponding angular distributions to become narrower. The main features of the experimental results from photodissociation of CH3Br adsorbed on LiF can be qualitatively explained using the results of the classical trajectory simulations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 4055-4061 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: It is well established that when a hyperthermal atom collides with a solid surface, a large fraction of the atom's translational energy may be transferred to the solid in a single collision. The energy transferred to the solid may be channeled into two modes, which are electronic excitation and energy transfer to phonons. In the present work, electronic excitation in the solid was not considered. Thus, it was assumed that energy is transferred during the scattering event from the projectile to the solid vibrational modes only. Since the gas particle interacts with a limited small number of surface atoms, a "hot spot'' is formed on the surface. We found that the excitation of the vibrational modes of the solid decays initially with a decay constant of less than 0.5 ps and then more slowly with a decay constant of 2.5–3.5 ps. A discussion of which vibrational modes are excited is also given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 87 (1987), S. 4170-4179 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The stochastic trajectory method has been applied to the scattering of CO from an LiF(100) surface. At low surface temperature TS, the trajectories of the gas molecule exhibited multiple collisions with the surface. The degree of rotational and translational energy accommodation could be related to the residence time at the surface. The residence time of the molecule on the surface was in turn related to a desorption rate constant which had an Arrhenius form with an activation energy which was about one third of the interaction potential well depth. At high TS most of the trajectories exhibited only one gas–surface collision. In this scattering regime we used stochastic sensitivity analysis (SSA) to obtain first and second order sensitivity coefficients which described how the final rotational and translational energies were coupled to TS and to the initial rotational and translational energies. At low initial translational energies EiT, we found that the most important effect on the final rotational energy of increasing EiT was the increase of the accommodation of energy between the surface modes and the rotational modes of the molecule. The direct coupling of the translational to rotational modes became dominant only at higher EiT. The energy parameters found at high TS with the SSA were also found to yield the per collision rate of energy accommodation at low TS.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 86 (1987), S. 443-453 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Yields of molecular ions desorbed from surfaces by energetic heavy ions have been studied using a thermal spike model. A temperature profile was assumed which is appropriate for high linear energy transfer (LET) ion-solid interactions. The desorption kinetics were assumed to follow a simple Arrhenius rate law which has been found to be useful in understanding desorption due to rapid temperature jumps. With these assumptions, we have fit recent desorption experiments where the exciting ions had a LET in the range of 10–100 MeV cm2 mg−1 and where the desorbed molecules ranged from valine to insulin. The thermal spike model predicted nonlinear dependence of the yield on LET at lower LET and a nearly linear dependence of the yield on LET at high LET. These features are in good agreement with the experimental data. We also considered modified models which included a loss channel due to fragmentation. These models gave somewhat better agreement with the experimental data. The parameters obtained in these fits were analyzed using sensitivity analysis to determine their uncertainties and to determine the interdependencies between parameters. The best fit model has been used to predict desorption yields at higher and lower LET and for different initial energy densities in the ionized track.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 86 (1987), S. 5816-5824 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have examined the effects of collisions among the molecules desorbing from solid surfaces by means of Monte Carlo simulations, and have identified the conditions under which and to what extent these collisions would influence the experimentally observed product distributions. By simulating the experiment performed by Cowin et al. [Surf. Sci. 78, 545 (1978)] on the laser induced desorption of D2 from tungsten, we have found that at high coverages each desorbate makes on average 2.9 collisions which decreases to no collisions at very low coverages. These collisions affect the product distribution at high coverages to such an extent that even if the nascent desorbed flux is under thermal equilibrium, these post-desorption collisions could lead to nonequilibrium distributions. The effect of the post-desorption collisions is influenced by the rate of heating the surface and the kinetics of the desorption process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...