ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2011-08-24
    Description: The edge technique is a new and powerful method for measuring small frequency shifts such as the Doppler shift of an atmospheric backscattered signal from a pulsed laser. The edge technique can be used for high spatial resolution, high accuracy ground and airborne wind measurements as well as high accuracy spaceborne wind measurements. We have recently made our first ground based wind measurements. These have a spatial resolution of 15 m and an accuracy of 25 cm/s and these measurements are presented in this paper. This is a unique capability and provides valuable information for studies of turbulent processes in the lower atmosphere. It could also be used for high sensitivity detection of wind shear and microbursts in the vicinity of airports. In addition, global wind measurements can be made with the edge technique from space with an accuracy of 1 m/s and a vertical resolution as high as 150 m in the boundary layer and 1 km through the troposphere. Such a system could make eyesafe wind measurements using well developed diode pumped solid state laser technology at 1.06 micron. Multi-pulse averaging would provide a spatially representative wind measurement.
    Keywords: Meteorology and Climatology
    Type: ; 59-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: The edge technique utilizes the edge of a high spectral resolution filter for high accuracy wind measurement using direct detection lidar. The signal is split between an edge filter channel and a broadband energy monitor channel. The energy monitor channel is used for signal normalization. The edge measurement is made as a differential frequency measurement between the outgoing laser signal and the atmospheric backscattered return for each pulse. As a result, the measurement is insensitive to laser and edge filter frequency jitter and drift at a level less than a few parts in 10(exp 10). We will discuss the methodology of the technique in detail, present a broad range of simulation results, and provide preprints of a journal article currently in press.
    Keywords: Meteorology and Climatology
    Type: Nineteenth International Laser Radar Conference; Part 2; 691-694; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...