ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing :
    Keywords: Physical geography. ; Environmental monitoring. ; Biotic communities. ; Geology. ; Environment. ; Freshwater ecology. ; Marine ecology. ; Earth System Sciences. ; Environmental Monitoring. ; Ecosystems. ; Geology. ; Environmental Sciences. ; Freshwater and Marine Ecology.
    Description / Table of Contents: Introduction -- Freezing of lakes -- Structure and properties of lake ice -- Thermodynamics of Seasonal lake ice -- Mechanics of lake ice -- Proglacial lakes -- Lake Water Body in the Ice Season -- Ice-Covered Lakes Environment -- Lake ice Climatology -- Future of frozen lakes -- Annex: Ice Properties and Useful Formulae -- References -- Index.
    Abstract: This book updates the first edition for the status of knowledge in the physics of lake ice and the interactions between the ice cover and the liquid water underneath. Since the first edition was written in 2013, there has been a lot of progress in the field, in particular concerning environmental questions and the impact of climate change. Life conditions in ice-covered lakes and practical matters are now brought more into the picture so that the revision also properly serves as a handbook for applications. The author has worked widely with boreal lakes, polar lakes and Central Asian lakes that provides a wide geographical spectrum. Chapter 1 gives a brief overview and presents the research fields. The second chapter contains the classification of ice-covered lakes and observation techniques, especially remote sensing. In Chapter 3, the structure and properties of lake ice are presented including optics and geochemistry. Ice growth and melting are treated in Chapter 4, while the following chapter focuses on ice mechanics with applications to traffic on ice and ice loads. Chapter 6 goes into the exotic environment of pro-glacial lakes. Chapter 7 contains the stratification and circulation of the water body beneath lake ice, Chapter 8 presents the winter ecology of freezing lakes and discusses the lake ice interface toward the society, and Chapter 9 summarizes the climate change impact on lake ice seasons. The book ends into a brief closing chapter and list of references. Research problems for student learning are listed throughout the book. Annexes are included to provide numerical data of constants and standard formulae to help practical calculations and student tasks. Lake ice closely interacts with human living conditions, but people have learnt to live with that and to utilize the ice. In the present time this is true for on-ice traffic and recreation activities. Ice fishing has become a widely enjoyed hobby, and winter sports such as skiing, skating, and ice sailing are popular activities on frozen lakes. The lake ice response to eventual climate warming would appear as a shortening of the ice season due to the increasing air temperature and also as changing of the quality of the ice seasons via changes in ice thickness and structure. The book gives the whole story of lake ice into a single volume. The second, revised edition updates the content based on recent progress in winter limnology and ice physics research and applications. The author has contributed to lake ice research since the 1980s. In particular, his topics have been lake ice structure and thermodynamics, light transfer in ice and snow, ice mechanics in large lakes, and lake ice climatology. Mathematical modeling of ice growth, drift, and decay are covered in this research.
    Type of Medium: Online Resource
    Pages: XII, 361 p. 160 illus., 116 illus. in color. , online resource.
    Edition: 2nd ed. 2023.
    ISBN: 9783031256059
    Series Statement: Springer Praxis Books
    DDC: 550
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Helsinki : Helsinki University Press
    Call number: AWI G8-98-0346a ; AWI G8-98-0346b
    Type of Medium: Monograph available for loan
    Pages: Vol. :1-446, Vol. 2: 447-823 ; : Abb. ; 24 cm
    ISBN: 9514582268
    Branch Library: AWI Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Associated volumes
    Call number: AWI A4-13-0079
    In: Springer Praxis books in geophysical sciences
    Description / Table of Contents: Contents: Preface to the first edition. - Preface to the second editon. - List of figures. - List of tables. - List of symbols. - List of abbreviations. - 1 Introduction. - 2 Drift ice material. - 2.1 Sea ice cover. - 2.2 Ice floes to drift ice particles. - 2.3 Sea ice growth and melting. - 2.4 Ice thickness distribution. - 2.5 Sea ice ridges. - 2.6 Drift ice state. - 3 Ice kinematics. - 3.1 Description of ice velocity field. - 3.2 Observations. - 3.3 Stochastic modelling. - 3.4 Conservation of ice. - 4 Sea ice rheology. - 4.1 General. - 4.2 Viscous laws. - 4.3 Plastic laws. - 4.4 Granular floe collision models. - 4.5 Scaling of ice strength. - 5 Equation of drift ice motion. - 5.1 Derivation of the equation of motion. - 5.2 Atmospheric and oceanic boundary layers. - 5.3 Sea ice-ocean interaction. - 5.4 Scale analysis. - 5.5 Dynamics of a single ice floe. - 6 Free drift. - 6.1 Steady state solution. - 6.2 Non-steady case. - 6.3 Linear coupled ice-ocean model. - 6.4 Frequency spectrum of free drift. - 6.5 Spatial aspects of free drift. - 7 Drift in the presence of internal friction. - 7.1 The role of internal friction. - 7.2 Channel flow of sea ice. - 7.3 Ice drift along coastal boundary. - 7.4 Zonal sea ice drift. - 7.5 Modelling of ice tank experiments. - 7.6 Timespace scaling of ice drift. - 8 Numerical modelling. - 8.1 Numerical solutions. - 8.2 Examples of sea ice dynamics models. - 8.3 Short-term modelling applications. - 8.4 Oil spills in ice conditions. - 8.5 Climate models. - 9 Use and need of knowledge on ice drift. - 9.1 Science. - 9.2 Practice. - 9.3 Final comments. - 10 Study problems. - 10.1 Problems. - 10.2 Instructions and solutions. - 11 References. - Index.
    Description / Table of Contents: This new edition of The drift of sea ice brings the theory, observations and practical applications of research into sea ice drift completely up to date, taking in to account and discussing the many new scientific results which have been published, in particular connected with thermodynamics, ice-ocean interaction, scaling, and numerical model applications in short-term and climate forecasting. This revised and expanded text presents the geophysical theory, observations from field programs, mathematical modelling techniques, and applications of sea ice drift science. It shows how the fundamental laws of sea ice drift come from the material properties of sea ice and the basic laws of mechanics. The book provides detailed analytical modelling and mathematical models and presents the construction of numerical ice drift models. The drift of sea ice gives a collection of worked examples on sea ice dynamics; details the derivation of the fundamental laws of sea ice dynamics in an understandable form; teaches methods for local and regional ice forecasting for ice engineering applications; analyses the system of equations for the general properties of sea ice drift and the derivation of the free drift model and analytical models for ice drift in the presence of internal friction; makes an excellant source book for climate research concerning the role of sea ice dynamics in the global climate.
    Type of Medium: Monograph available for loan
    Pages: XXX, 347 Seiten , Illustrationen
    Edition: 2. Aufl., Softcover reprint of hardcover 2011
    ISBN: 9783642267574
    Series Statement: Springer Praxis books in geophysical sciences
    Language: English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-12
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In-situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. Therefore, we here provide four datasets comprising: 1. Harmonized, standardized and aggregated in situ observations of SEB components at 64 vegetated and glaciated sites north of 60° latitude, in the time period 1994-2021 2. A description of all study sites and associated environmental conditions, including the vegetation types, which correspond to the classification of the Circumpolar Arctic Vegetation Map (CAVM, Raynolds et al. 2019). 3. Data generated in a literature synthesis from 358 study sites on vegetation or glacier (〉=60°N latitude) covered by 148 publications. 4. Metadata, including data contributor information and measurement heights of variables associated with Oehri et al. 2022.
    Keywords: Arctic; ArcticTundraSEB; Arctic Tundra Surface Energy Budget; dry tundra; Eddy covariance; eddy heat flux; glacier; graminoids; ground heat flux and net radiation; harmonized data; high latitude; Land-Atmosphere; Land-cover; latent and sensible heat; latent heat flux; longwave radiation; meteorological data; observatory data; Peat bog; Radiation fluxes; Radiative energy budget; sensible heat flux; shortwave radiation; shrub tundra; surface energy balance; synthetic data; tundra vegetation; wetland
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-22
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset describes the environmental conditions for 64 tundra and glacier sites (〉=60°N latitude) across the Arctic, for which in situ measurements of surface energy budget components were harmonized (see Oehri et al. 2022). These environmental conditions are (proxies of) potential drivers of SEB-components and could therefore be called SEB-drivers. The associated environmental conditions, include the vegetation types graminoid tundra, prostrate dwarf-shrub tundra, erect-shrub tundra, wetland complexes, barren complexes (≤ 40% horizontal plant cover), boreal peat bogs and glacier. These land surface types (apart from boreal peat bogs) correspond to the main classification units of the Circumpolar Arctic Vegetation Map (CAVM, Raynolds et al. 2019). For each site, additional climatic and biophysical variables are available, including cloud cover, snow cover duration, permafrost characteristics, climatic conditions and topographic conditions.
    Keywords: Arctic; Arctic_SEB_CA-SCB; Arctic_SEB_CP1; Arctic_SEB_Dye-2; Arctic_SEB_EGP; Arctic_SEB_FI-Lom; Arctic_SEB_GL-NuF; Arctic_SEB_GL-ZaF; Arctic_SEB_GL-ZaH; Arctic_SEB_KAN_B; Arctic_SEB_KAN_L; Arctic_SEB_KAN_M; Arctic_SEB_KAN_U; Arctic_SEB_KPC_L; Arctic_SEB_KPC_U; Arctic_SEB_MIT; Arctic_SEB_NASA-E; Arctic_SEB_NASA-SE; Arctic_SEB_NASA-U; Arctic_SEB_NUK_K; Arctic_SEB_NUK_L; Arctic_SEB_NUK_N; Arctic_SEB_NUK_U; Arctic_SEB_QAS_A; Arctic_SEB_QAS_L; Arctic_SEB_QAS_M; Arctic_SEB_QAS_U; Arctic_SEB_RU-Che; Arctic_SEB_RU-Cok; Arctic_SEB_RU-Sam; Arctic_SEB_RU-Tks; Arctic_SEB_RU-Vrk; Arctic_SEB_Saddle; Arctic_SEB_SCO_L; Arctic_SEB_SCO_U; Arctic_SEB_SE-St1; Arctic_SEB_SJ-Adv; Arctic_SEB_SJ-Blv; Arctic_SEB_SouthDome; Arctic_SEB_Summit; Arctic_SEB_TAS_A; Arctic_SEB_TAS_L; Arctic_SEB_TAS_U; Arctic_SEB_THU_L; Arctic_SEB_THU_U; Arctic_SEB_Tunu-N; Arctic_SEB_UPE_L; Arctic_SEB_UPE_U; Arctic_SEB_US-A03; Arctic_SEB_US-A10; Arctic_SEB_US-An1; Arctic_SEB_US-An2; Arctic_SEB_US-An3; Arctic_SEB_US-Atq; Arctic_SEB_US-Brw; Arctic_SEB_US-EML; Arctic_SEB_US-HVa; Arctic_SEB_US-ICh; Arctic_SEB_US-ICs; Arctic_SEB_US-ICt; Arctic_SEB_US-Ivo; Arctic_SEB_US-NGB; Arctic_SEB_US-Upa; Arctic_SEB_US-xHE; Arctic_SEB_US-xTL; ArcticTundraSEB; Arctic Tundra Surface Energy Budget; Aspect; Aspect, coefficient of variation; Calculated average/mean values; Cloud cover; Cloud cover, standard deviation; Cloud top pressure; Cloud top pressure, standard deviation; Cloud top temperature; Cloud top temperature, standard deviation; Conrad's continentality index; Daily maximum; Daily mean; Data source; Date/Time of event; dry tundra; Eddy covariance; eddy heat flux; ELEVATION; Elevation, standard deviation; Event label; Field observation; glacier; graminoids; ground heat flux and net radiation; harmonized data; high latitude; Humidity, relative; Land-Atmosphere; Land-cover; Land cover classes; Land cover type; latent and sensible heat; latent heat flux; LATITUDE; Location ID; LONGITUDE; longwave radiation; Mean values; Median values; meteorological data; Number of vegetation types; observatory data; Peat bog; Permafrost, type; Permafrost extent; Permafrost ice content, description; Precipitation; Precipitation, coefficient of variation; Precipitation, daily, maximum; Precipitation, snow; Precipitation, sum; Pressure, atmospheric; p-value; Radiation fluxes; Radiative energy budget; Reference/source; sensible heat flux; Shannon Diversity Index; Shannon Diversity Index, maximum; shortwave radiation; shrub tundra; Site; Slope; Slope, coefficient of variation; Slope, mathematical; Snow, onset, day of the year; Snow cover, number of days; Snowfall, coefficient of variation; Snow-free days; Snow type; Soil water content, volumetric; Species present; Summer warmth index; surface energy balance; synthetic data; Temperature, air, annual mean; Temperature, air, coefficient of variation; Temperature, annual mean range; tundra vegetation; Type of study; Uniform resource locator/link to reference; Vapour pressure deficit; Vegetation type; wetland; Wind speed; Zone
    Type: Dataset
    Format: text/tab-separated-values, 4705 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-12
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset contains metadata information about surface energy budget components measured at 64 tundra and glacier sites 〉60° N across the Arctic. This information was taken from the open-access repositories FLUXNET, Ameriflux, AON, GC-Net and PROMICE. The contained datasets are associated with the publication vegetation type as an important predictor of the Arctic Summer Land Surface Energy Budget by Oehri et al. 2022, and intended to support research of surface energy budgets and their relationship with environmental conditions, in particular vegetation characteristics across the terrestrial Arctic.
    Keywords: Aggregation type; Arctic; Arctic_SEB_CA-SCB; Arctic_SEB_CP1; Arctic_SEB_Dye-2; Arctic_SEB_EGP; Arctic_SEB_FI-Lom; Arctic_SEB_GL-NuF; Arctic_SEB_GL-ZaF; Arctic_SEB_GL-ZaH; Arctic_SEB_KAN_B; Arctic_SEB_KAN_L; Arctic_SEB_KAN_M; Arctic_SEB_KAN_U; Arctic_SEB_KPC_L; Arctic_SEB_KPC_U; Arctic_SEB_MIT; Arctic_SEB_NASA-E; Arctic_SEB_NASA-SE; Arctic_SEB_NASA-U; Arctic_SEB_NUK_K; Arctic_SEB_NUK_L; Arctic_SEB_NUK_N; Arctic_SEB_NUK_U; Arctic_SEB_QAS_A; Arctic_SEB_QAS_L; Arctic_SEB_QAS_M; Arctic_SEB_QAS_U; Arctic_SEB_RU-Che; Arctic_SEB_RU-Cok; Arctic_SEB_RU-Sam; Arctic_SEB_RU-Tks; Arctic_SEB_RU-Vrk; Arctic_SEB_Saddle; Arctic_SEB_SCO_L; Arctic_SEB_SCO_U; Arctic_SEB_SE-St1; Arctic_SEB_SJ-Adv; Arctic_SEB_SJ-Blv; Arctic_SEB_SouthDome; Arctic_SEB_Summit; Arctic_SEB_TAS_A; Arctic_SEB_TAS_L; Arctic_SEB_TAS_U; Arctic_SEB_THU_L; Arctic_SEB_THU_U; Arctic_SEB_Tunu-N; Arctic_SEB_UPE_L; Arctic_SEB_UPE_U; Arctic_SEB_US-A03; Arctic_SEB_US-A10; Arctic_SEB_US-An1; Arctic_SEB_US-An2; Arctic_SEB_US-An3; Arctic_SEB_US-Atq; Arctic_SEB_US-Brw; Arctic_SEB_US-EML; Arctic_SEB_US-HVa; Arctic_SEB_US-ICh; Arctic_SEB_US-ICs; Arctic_SEB_US-ICt; Arctic_SEB_US-Ivo; Arctic_SEB_US-NGB; Arctic_SEB_US-Upa; Arctic_SEB_US-xHE; Arctic_SEB_US-xTL; ArcticTundraSEB; Arctic Tundra Surface Energy Budget; Author(s); Data source; Date/Time of event; Day of the year; Description; dry tundra; Eddy covariance; eddy heat flux; Event label; Field observation; First year of observation; glacier; graminoids; ground heat flux and net radiation; harmonized data; high latitude; Institution; Instrument; Land-Atmosphere; Land-cover; Last year of observation; latent and sensible heat; latent heat flux; LATITUDE; Location ID; LONGITUDE; longwave radiation; meteorological data; Method comment; observatory data; Peat bog; Radiation fluxes; Radiative energy budget; Sample height; sensible heat flux; shortwave radiation; shrub tundra; surface energy balance; synthetic data; tundra vegetation; Type of study; Unit; Variable; wetland
    Type: Dataset
    Format: text/tab-separated-values, 20562 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-12
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset describes the data generated in a literature synthesis, covering 358 study sites on vegetation or glacier (〉=60°N latitude), which contained surface energy budget observations. The literature synthesis comprised 148 publications searched on the ISI Web of Science Core Collection.
    Keywords: Arctic; Arctic_SEB_1; Arctic_SEB_1951-2009_1; Arctic_SEB_1965-2000_1; Arctic_SEB_1965-2000_2; Arctic_SEB_1965-2000_3; Arctic_SEB_1965-2000_4; Arctic_SEB_1969-2013_1; Arctic_SEB_1970-1972_1; Arctic_SEB_1970-1979_1; Arctic_SEB_1972-2004_1; Arctic_SEB_1972-2004_10; Arctic_SEB_1972-2004_11; Arctic_SEB_1972-2004_2; Arctic_SEB_1972-2004_3; Arctic_SEB_1972-2004_4; Arctic_SEB_1972-2004_5; Arctic_SEB_1972-2004_6; Arctic_SEB_1972-2004_7; Arctic_SEB_1972-2004_8; Arctic_SEB_1972-2004_9; Arctic_SEB_1979-1995_1; Arctic_SEB_1979-1995_2; Arctic_SEB_1979-1995_3; Arctic_SEB_1979-1995_4; Arctic_SEB_1979-2005_1; Arctic_SEB_1980-1981_1; Arctic_SEB_1981-1997_1; Arctic_SEB_1981-1997_2; Arctic_SEB_1983-2005_1; Arctic_SEB_1983-2005_2; Arctic_SEB_1983-2005_3; Arctic_SEB_1984-1991_1; Arctic_SEB_1985-1989_1; Arctic_SEB_1985-2016_1; Arctic_SEB_1988-1988_1; Arctic_SEB_1988-1988_2; Arctic_SEB_1988-1988_3; Arctic_SEB_1988-1988_4; Arctic_SEB_1988-1988_5; Arctic_SEB_1989-1990_1; Arctic_SEB_1990-1991_1; Arctic_SEB_1991-1991_1; Arctic_SEB_1991-1999_1; Arctic_SEB_1991-1999_2; Arctic_SEB_1991-1999_3; Arctic_SEB_1992-1992_1; Arctic_SEB_1992-1997_1; Arctic_SEB_1994-1994_1; Arctic_SEB_1994-1994_2; Arctic_SEB_1994-1994_3; Arctic_SEB_1994-1994_4; Arctic_SEB_1994-1996_1; Arctic_SEB_1994-1996_10; Arctic_SEB_1994-1996_11; Arctic_SEB_1994-1996_12; Arctic_SEB_1994-1996_13; Arctic_SEB_1994-1996_14; Arctic_SEB_1994-1996_15; Arctic_SEB_1994-1996_16; Arctic_SEB_1994-1996_17; Arctic_SEB_1994-1996_2; Arctic_SEB_1994-1996_3; Arctic_SEB_1994-1996_4; Arctic_SEB_1994-1996_5; Arctic_SEB_1994-1996_6; Arctic_SEB_1994-1996_7; Arctic_SEB_1994-1996_8; Arctic_SEB_1994-1996_9; Arctic_SEB_1994-2008_1; Arctic_SEB_1994-2008_2; Arctic_SEB_1994-2009_1; Arctic_SEB_1994-2015_1; Arctic_SEB_1994-2015_2; Arctic_SEB_1994-2015_3; Arctic_SEB_1994-2015_4; Arctic_SEB_1994-2015_5; Arctic_SEB_1994-2015_6; Arctic_SEB_1995-1995_1; Arctic_SEB_1995-1995_2; Arctic_SEB_1995-1996_1; Arctic_SEB_1995-1997_1; Arctic_SEB_1995-1997_2; Arctic_SEB_1995-1997_3; Arctic_SEB_1995-1997_4; Arctic_SEB_1995-1998_1; Arctic_SEB_1995-1999_1; Arctic_SEB_1996-1997_1; Arctic_SEB_1996-1999_1; Arctic_SEB_1996-2005_1; Arctic_SEB_1996-2005_2; Arctic_SEB_1996-2005_3; Arctic_SEB_1997-1998_1; Arctic_SEB_1997-1999_1; Arctic_SEB_1997-2018_1; Arctic_SEB_1997-2018_10; Arctic_SEB_1997-2018_11; Arctic_SEB_1997-2018_12; Arctic_SEB_1997-2018_13; Arctic_SEB_1997-2018_14; Arctic_SEB_1997-2018_15; Arctic_SEB_1997-2018_16; Arctic_SEB_1997-2018_17; Arctic_SEB_1997-2018_18; Arctic_SEB_1997-2018_19; Arctic_SEB_1997-2018_2; Arctic_SEB_1997-2018_20; Arctic_SEB_1997-2018_21; Arctic_SEB_1997-2018_22; Arctic_SEB_1997-2018_23; Arctic_SEB_1997-2018_24; Arctic_SEB_1997-2018_25; Arctic_SEB_1997-2018_3; Arctic_SEB_1997-2018_4; Arctic_SEB_1997-2018_5; Arctic_SEB_1997-2018_6; Arctic_SEB_1997-2018_7; Arctic_SEB_1997-2018_8; Arctic_SEB_1997-2018_9; Arctic_SEB_1998-1998_1; Arctic_SEB_1998-1999_1; Arctic_SEB_1998-2000_1; Arctic_SEB_1998-2001_1; Arctic_SEB_1998-2005_1; Arctic_SEB_1998-2011_1; Arctic_SEB_1998-2011_2; Arctic_SEB_1998-2011_3; Arctic_SEB_1998-2013_1; Arctic_SEB_1999-1999_1; Arctic_SEB_1999-2000_1; Arctic_SEB_1999-2008_1; Arctic_SEB_1999-2008_2; Arctic_SEB_1999-2009_1; Arctic_SEB_1999-2014_1; Arctic_SEB_2000-2000_1; Arctic_SEB_2000-2000_2; Arctic_SEB_2000-2000_3; Arctic_SEB_2000-2000_4; Arctic_SEB_2000-2002_1; Arctic_SEB_2000-2002_2; Arctic_SEB_2000-2002_3; Arctic_SEB_2000-2003_1; Arctic_SEB_2000-2003_2; Arctic_SEB_2000-2003_3; Arctic_SEB_2000-2007_1; Arctic_SEB_2000-2007_2; Arctic_SEB_2000-2007_3; Arctic_SEB_2000-2007_4; Arctic_SEB_2000-2008_1; Arctic_SEB_2000-2010_1; Arctic_SEB_2000-2011_1; Arctic_SEB_2000-2011_10; Arctic_SEB_2000-2011_11; Arctic_SEB_2000-2011_2; Arctic_SEB_2000-2011_3; Arctic_SEB_2000-2011_4; Arctic_SEB_2000-2011_5; Arctic_SEB_2000-2011_6; Arctic_SEB_2000-2011_7; Arctic_SEB_2000-2011_8; Arctic_SEB_2000-2011_9; Arctic_SEB_2000-2014_1; Arctic_SEB_2001-2003_1; Arctic_SEB_2002-2002_1; Arctic_SEB_2002-2003_1; Arctic_SEB_2002-2003_2; Arctic_SEB_2002-2004_1; Arctic_SEB_2002-2010_1; Arctic_SEB_2002-2012_1; Arctic_SEB_2002-2012_2; Arctic_SEB_2002-2012_3; Arctic_SEB_2003-2003_1; Arctic_SEB_2003-2004_1; Arctic_SEB_2003-2007_1; Arctic_SEB_2003-2008_1; Arctic_SEB_2003-2008_2; Arctic_SEB_2003-2010_1; Arctic_SEB_2003-2010_2; Arctic_SEB_2003-2010_3; Arctic_SEB_2003-2011_1; Arctic_SEB_2004-2004_1; Arctic_SEB_2004-2006_1; Arctic_SEB_2004-2013_1; Arctic_SEB_2005-2005_1; Arctic_SEB_2006-2006_1; Arctic_SEB_2006-2006_2; Arctic_SEB_2006-2007_1; Arctic_SEB_2006-2007_10; Arctic_SEB_2006-2007_11; Arctic_SEB_2006-2007_12; Arctic_SEB_2006-2007_13; Arctic_SEB_2006-2007_14; Arctic_SEB_2006-2007_2; Arctic_SEB_2006-2007_3; Arctic_SEB_2006-2007_4; Arctic_SEB_2006-2007_5; Arctic_SEB_2006-2007_6; Arctic_SEB_2006-2007_7; Arctic_SEB_2006-2007_8; Arctic_SEB_2006-2007_9; Arctic_SEB_2006-2008_1; Arctic_SEB_2006-2008_2; Arctic_SEB_2006-2009_1; Arctic_SEB_2007-2007_1; Arctic_SEB_2007-2008_1; Arctic_SEB_2007-2009_1; Arctic_SEB_2007-2009_2; Arctic_SEB_2007-2010_1; Arctic_SEB_2007-2014_1; Arctic_SEB_2007-2015_1; Arctic_SEB_2007-2015_2; Arctic_SEB_2008-2008_1; Arctic_SEB_2008-2008_2; Arctic_SEB_2008-2008_3; Arctic_SEB_2008-2009_1; Arctic_SEB_2008-2010_1; Arctic_SEB_2008-2010_2; Arctic_SEB_2008-2010_3; Arctic_SEB_2008-2011_1; Arctic_SEB_2008-2012_1; Arctic_SEB_2008-2012_2; Arctic_SEB_2008-2012_3; Arctic_SEB_2009-2012_1; Arctic_SEB_2009-2012_2; Arctic_SEB_2009-2012_3; Arctic_SEB_2009-2012_4; Arctic_SEB_2009-2012_5; Arctic_SEB_2009-2014_1; Arctic_SEB_2009-2014_2; Arctic_SEB_2010-2014_1; Arctic_SEB_2010-2014_2; Arctic_SEB_2010-2014_3; Arctic_SEB_2010-2014_4; Arctic_SEB_2010-2014_5; Arctic_SEB_2011-2011_1; Arctic_SEB_2011-2013_1; Arctic_SEB_2011-2014_1; Arctic_SEB_2012-2012_1; Arctic_SEB_2012-2013_1; Arctic_SEB_2012-2013_2; Arctic_SEB_2012-2013_3; Arctic_SEB_2012-2013_4; Arctic_SEB_2012-2014_1; Arctic_SEB_2012-2015_1; Arctic_SEB_2012-2015_2; Arctic_SEB_2012-2015_3; Arctic_SEB_2012-2015_4; Arctic_SEB_2012-2015_5; Arctic_SEB_2013-2013_1; Arctic_SEB_2013-2014_1; Arctic_SEB_2013-2015_1; Arctic_SEB_2013-2015_2; Arctic_SEB_2013-2015_3; Arctic_SEB_2014-2014_1; Arctic_SEB_2014-2015_1; Arctic_SEB_2014-2016_1; Arctic_SEB_2015-2015_1; Arctic_SEB_2015-2015_2; Arctic_SEB_2015-2015_3; ArcticTundraSEB; Arctic Tundra Surface Energy Budget; Author(s); Classification; Comment; Data collection methodology; Data type; Date/Time of event; dry tundra; Eddy covariance; eddy heat flux; ELEVATION; Energy budget, description; Event label; Field observation; First year of observation; glacier; glaciers; graminoids; ground heat flux and net radiation; harmonized data; high latitude; Identification; Journal/report title; Land-Atmosphere; Land-cover; Last year of observation; latent and sensible heat; latent heat flux; LATITUDE; Location; LONGITUDE; longwave radiation; meteorological data; observatory data; Peat bog; Persistent Identifier; Publication type; Radiation fluxes; Radiative energy budget; Resolution; Season; sensible heat flux; shortwave radiation; shrub tundra; Spatial coverage; surface energy balance; synthetic data; Title; tundra vegetation; Type of study; Variable; Vegetation type; wetland; wetlands; Year of publication
    Type: Dataset
    Format: text/tab-separated-values, 8650 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-12
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset comprises harmonized, standardized and aggregated in-situ observations of surface energy budget components measured at 64 sites on vegetated and glaciated sites north of 60° latitude, in the time period from 1994 till 2021. The surface energy budget components include net radiation, sensible heat flux, latent heat flux, ground heat flux, net shortwave radiation, net longwave radiation, surface temperature and albedo, which were aggregated to daily mean, minimum and maximum values from hourly and half-hourly measurements. Data were retrieved from the monitoring networks FLUXNET, AmeriFlux, AON, GC-Net and PROMICE.
    Keywords: Albedo; Albedo, maximum; Albedo, minimum; Arctic; Arctic_SEB_CA-SCB; Arctic_SEB_CP1; Arctic_SEB_Dye-2; Arctic_SEB_EGP; Arctic_SEB_FI-Lom; Arctic_SEB_GL-NuF; Arctic_SEB_GL-ZaF; Arctic_SEB_GL-ZaH; Arctic_SEB_KAN_B; Arctic_SEB_KAN_L; Arctic_SEB_KAN_M; Arctic_SEB_KAN_U; Arctic_SEB_KPC_L; Arctic_SEB_KPC_U; Arctic_SEB_MIT; Arctic_SEB_NASA-E; Arctic_SEB_NASA-SE; Arctic_SEB_NASA-U; Arctic_SEB_NUK_K; Arctic_SEB_NUK_L; Arctic_SEB_NUK_N; Arctic_SEB_NUK_U; Arctic_SEB_QAS_A; Arctic_SEB_QAS_L; Arctic_SEB_QAS_M; Arctic_SEB_QAS_U; Arctic_SEB_RU-Che; Arctic_SEB_RU-Cok; Arctic_SEB_RU-Sam; Arctic_SEB_RU-Tks; Arctic_SEB_RU-Vrk; Arctic_SEB_Saddle; Arctic_SEB_SCO_L; Arctic_SEB_SCO_U; Arctic_SEB_SE-St1; Arctic_SEB_SJ-Adv; Arctic_SEB_SJ-Blv; Arctic_SEB_SouthDome; Arctic_SEB_Summit; Arctic_SEB_TAS_A; Arctic_SEB_TAS_L; Arctic_SEB_TAS_U; Arctic_SEB_THU_L; Arctic_SEB_THU_U; Arctic_SEB_Tunu-N; Arctic_SEB_UPE_L; Arctic_SEB_UPE_U; Arctic_SEB_US-A03; Arctic_SEB_US-A10; Arctic_SEB_US-An1; Arctic_SEB_US-An2; Arctic_SEB_US-An3; Arctic_SEB_US-Atq; Arctic_SEB_US-Brw; Arctic_SEB_US-EML; Arctic_SEB_US-HVa; Arctic_SEB_US-ICh; Arctic_SEB_US-ICs; Arctic_SEB_US-ICt; Arctic_SEB_US-Ivo; Arctic_SEB_US-NGB; Arctic_SEB_US-Upa; Arctic_SEB_US-xHE; Arctic_SEB_US-xTL; ArcticTundraSEB; Arctic Tundra Surface Energy Budget; Bowen ratio; Calculated from Ground heat, flux / Net radiation; Calculated from Heat, flux, latent / Net radiation; Calculated from Heat, flux, sensible / Heat, flux, latent; Calculated from Heat, flux, sensible / Net radiation; Calculated from Heat, flux, sensible + Heat, flux, latent + Ground heat, flux; Calculated from Long-wave downward radiation, maximum - Long-wave upward radiation, maximum; Calculated from Long-wave downward radiation, minimum - Long-wave upward radiation, minimum; Calculated from Long-wave downward radiation - Long-wave upward radiation; Calculated from Long-wave net radiation / Net radiation; Calculated from Short-wave downward (GLOBAL) radiation, maximum - Short-wave upward (REFLEX) radiation, maximum; Calculated from Short-wave downward (GLOBAL) radiation, minimum - Short-wave upward (REFLEX) radiation, minimum; Calculated from Short-wave downward (GLOBAL) radiation - Short-wave upward (REFLEX) radiation; Calculated from Short-wave net radiation, maximum + Long-wave net radiation, maximum; Calculated from Short-wave net radiation, minimum + Long-wave net radiation, minimum; Calculated from Short-wave net radiation / Net radiation; Calculated from Short-wave net radiation + Long-wave net radiation; Calculated from Short-wave upward (REFLEX) radiation / Short-wave downward (GLOBAL) radiation; Calculated from Surface temperature, maximum - Temperature, air, maximum; Calculated from Surface temperature, minimum - Temperature, air, minimum; Calculated from Surface temperature - Temperature, air; Cloud coverage; Cloud coverage, maximum; Cloud coverage, minimum; Daily maximum; Daily mean; Daily minimum; Data source; DATE/TIME; Day of the year; dry tundra; Eddy covariance; eddy heat flux; ELEVATION; Event label; Field observation; glacier; graminoids; Ground heat, flux; Ground heat, flux, maximum; Ground heat, flux, minimum; Ground heat, flux/Net radiation ratio; ground heat flux and net radiation; harmonized data; Heat, flux, latent; Heat, flux, latent, maximum; Heat, flux, latent, minimum; Heat, flux, latent/Net radiation ratio; Heat, flux, sensible; Heat, flux, sensible, maximum; Heat, flux, sensible, minimum; Heat flux, sensible/Net radiation ratio; high latitude; Humidity, relative; Humidity, relative, maximum; Humidity, relative, minimum; Land-Atmosphere; Land-cover; latent and sensible heat; latent heat flux; LATITUDE; Location ID; LONGITUDE; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave net radiation; Long-wave net radiation, maximum; Long-wave net radiation, minimum; Long-wave net radiation/Net radiation ratio; longwave radiation; Long-wave upward radiation; Long-wave upward radiation, maximum; Long-wave upward radiation, minimum; meteorological data; Month; Net radiation; Net radiation, maximum; Net radiation, minimum; Normalized by X / Potential incoming solar radiation, maximum * 100; observatory data; Original variable; Peat bog; Potential incoming solar radiation; Potential incoming solar radiation, maximum; Potential incoming solar radiation, minimum; Precipitation; Precipitation, daily, maximum; Precipitation, daily, minimum; Pressure, atmospheric; Pressure, atmospheric, maximum; Pressure, atmospheric, minimum; Radiation fluxes; Radiative energy budget; sensible heat flux; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave net radiation; Short-wave net radiation, maximum; Short-wave net radiation, minimum; Short-wave net radiation/Net radiation ratio; shortwave radiation; Short-wave upward (REFLEX) radiation; Short-wave upward (REFLEX) radiation, maximum; Short-wave upward (REFLEX) radiation, minimum; shrub tundra; Soil water content, volumetric; Soil water content, volumetric, maximum; Soil water content, volumetric, minimum; surface energy balance; Surface temperature; Surface temperature, maximum; Surface temperature, minimum; synthetic data; Temperature, air; Temperature, air, maximum; Temperature, air, minimum; Temperature, soil; Temperature, soil, maximum; Temperature, soil, minimum; Temperature gradient, 0-2m above surface; Temperature gradient, 0-2m above surface, maximum; Temperature gradient, 0-2m above surface, minimum; tundra vegetation; Type of study; Vapour pressure deficit; Vapour pressure deficit, maximum; Vapour pressure deficit, minimum; wetland; Wind direction; Wind speed; Wind speed, maximum; Wind speed, minimum; Year of observation
    Type: Dataset
    Format: text/tab-separated-values, 17112737 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-10-01
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-01-31
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...