ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 50 (1988), S. 229-243 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Yampa and Elkhead Mountains volcanic fields were erupted into sediment-filled fault basins during Miocene crustal extension in NW Colorado. Post-Miocene uplift and erosion has exposed alkali basalt lavas, pyroclastic deposits, volcanic necks and dykes which record hydrovolcanic and strombolian phenomena at different erosion depths. The occurrence of these different phenomena was related to the degree of lithification of the rocks through which the magmas rose. Hydrovolcanic interactions only occurred where rising basaltic magma encountered wet, porous, non-lithified sediments of the 600 m thick Miocene Brown's Park Formation. The interactions were fuelled by groundwater in these sediments: there was probably no standing surface water. Dykes intruded into the sediments have pillowed sides, and local swirled inclusions of sediment that were injected while fluidized in steam from heated pore water. Volcanic necks in the sediments consist of basaltic tuff, sediment blocks and separated grains derived from the sediments, lithic blocks (mostly derived from a conglomerate forming the local base of the Brown's Park Formation), and dykes composed of disaggregated sediment. The necks are cut by contemporaneous basalt dykes. Hydrovolcanic pyroclastic deposits formed tuff cones up to 100 m thick consisting of bedded air-fall, pyroclastic surge, and massive, poorly sorted deposits (MPSDs). All these contain sub-equal volumes of basaltic tuff and disaggregated sediment grains from the Brown's Park Formation. Possible explosive and effusive modes of formation for the MPSDs are discussed. Contemporaneous strombolian scoria deposits overlie lithified Cretaceous sedimentary rocks or thick basalt lavas. Volcanic necks intruded into the Cretaceous rocks consist of basalt clasts (some with spindle-shape), lithic clasts, and megacrysts derived from the magma, and are cut by basalt dykes. Rarely, strombolian deposits are interbedded with hydrovolcanic pyroclastic deposits, recording changes in eruption behaviour during one eruption. The hydrovolcanic eruptions occurred by interaction of magma with groundwater in the Brown's Park sediments. The explosive interactions disaggregated the sediment. Such direct digestion of sediment by the magma in the vents would probably not have released enough water to maintain a water/magma mass ratio sufficient for hydrovolcanic explosions to produce the tuff cones. Probably, additional water (perhaps 76% of the total) was derived by flow through the permeable sediments (especially the basal conglomerate to the formation), and into the vents.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 410 (2001), S. 457-461 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Earth's convecting upper mantle can be viewed as comprising three main reservoirs, beneath the Pacific, Atlantic and Indian oceans. Because of the uneven global distribution and migration of ridges and subduction zones, the surface area of the Pacific reservoir is at present contracting at ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Products of Pliocene (2–4 Ma) mafic to intermediate volcanism in the northwestern Cerros del Rio, a dominantly mafic volcanic field in the Española Basin of the Rio Grande Rift (RGR), range from 49% to 63% SiO2 and exhibit diversity in silica saturation, trace-element patterns, and isotopic compositions. Tholeiites, which are largely confined to west of the Rio Grande, have trace-element abundances that resemble those of oceanic basalts, but with mild depletions in Nb and Ta, and high 87Sr/86Sr, low 143Nd/144Nd, and high δ18O compared to typical OIB. They are regarded as asthenospherically-derived magmas contaminated with continental crust. Alkali basalts and hawaiites erupted from vents east of the Rio Grande are geochemically distinct, having generally higher overall incompatible-element abundances, but with pronounced depletions in K, Rb, Nb and Ta with respect to Th and LREE. Spatially-associated benmoreites, mugearites and latites (collectively termed “evolved” lavas) have similar trace-element characteristics to the mafic mildly-alkaline compositions, but are typically not as depleted in K. Hawaiites and evolved lavas exhibit a good negative correlation of 143Nd/144Nd with SiO2, due to interaction with lower continental crust. The most silicic “evolved” lavas carry the highest proportions of crustal material, and consequently have higher K/Th than the related hawaiites. Several (mostly mafic) lavas contain abundant crustally-derived resorbed quartz xenocrysts in O-isotope disequilibrium with the host magma. The δ18O values of xenocrystic quartz range over 4‰, indicating a variety of quartz-bearing crustal contaminants beneath the Española Basin. The hawaiites, with their unusual combination of trace-element enrichments and depletions, cannot be generated by any process of fractionation or crustal contamination superposed on a common mantle source type (oceanic or arc-source). It is a regional mantle source type, inasmuch as it was also present beneath NW Colorado during the mid-late Cenozoic. We argue that the hawaiite source must have originally existed as arc-source mantle enriched in LILE, generated during Mesozoic to early Cenozoic subduction at the western margin of North America. This arc-source mantle lost K, Rb and Ba, but not Th or LREE, prior to magmagenesis. Selective element loss may have occurred during lithospheric thinning and uprise of hydrated phlogopitebearing peridotite-possibly as a thermal boundary layer between lithosphere and asthenosphere — to shallow mantle depths, with consequent conversion of phlogopite to amphibole (an inferior host for K, Rb and Ba). We suggest that this occurred during the early extensional phase of the northern RGR. Further extension was accompanied by partial melting and release of magma from this source and the underlying asthenosphere, which by the Pliocene was of oceanic type. The hawaiite source mantle is the product of a long history of subduction succeeded by lithospheric extension of the formerly overriding plate. Similar chemical signatures may have developed in the mantle beneath other regions with comparable histories.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Yampa volcanic field (late Miocene) consists of about 70 outcrops of monogenetic cinder cones, lavas, dykes, volcanic necks and hydrovolcanic pyroclastic deposits and is situated in the most northerly part of the Rio Grande rift. Contemporaneous extension in this part of the rift was small, but there is geological and geophysical evidence that, by the late Miocene, the area was underlain by hot asthenosphere convected by the Yellowstone mantle plume. The Yampa rocks are mafic and chemically diverse, including basanites, alkali basalts, potassic trachybasalts, hawaiites and shoshonites. About half the rocks bear the xenocryst suite feldspar, pyroxene, Fe−Ti oxide, amphibole, biotite. There is a tendency for xenocryst-free rocks to be the most mafic, interpreted to indicate that the xenocrysts are cognate, and represent cumulate material from fractional crystallization of the magmas in deep crustal magma chambers. The elemental and isotopic (Nd and Sr) variations can be modelled by mixing variable proportions of partial melts of local lithospheric mantle with an OIB end-member formed by partial melting of asthenosphere. The OIB end-member appears to have the elemental and isotopic composition of typical Northern Hemisphere OIB, in particular the plume-derived basanites of Loihi seamount, Hawaii. The OIB end-member at Yampa is interpreted to have been derived from mantle convected in the Yellowstone mantle plume.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Petrographic and geochemical studies of peridotites from the South Sandwich forearc region provide new evidence for the evolution of the South Sandwich arc–basin system and for the nature of interactions between arc magma and oceanic lithosphere. Peridotites from the inner trench wall in the north-east corner of the forearc vary from clinopyroxene-bearing harzburgites, through samples transitional between harzburgites and dunites or wehrlites, to dunites. The harzburgites are LREE depleted with low incompatible element abundances and have chromites with intermediate Cr# (ca. 0.40). Modelling shows that they represent the residues from 15–20% melting at oxygen fugacities close to the QFM buffer. The dunites have U-shaped REE patterns, low incompatible element abundances and high Cr# (0.66–0.77). Petrography and geochemistry indicate that the latter are the product of intense interaction between peridotite and melt saturated with olivine under conditions of high oxygen fugacity (QFM + 2). The transitional samples are the product of lesser interaction between peridotite and melt saturated with olivine ± clinopyroxene. The data demonstrate that the harzburgites originated as the residue from melting at a ridge (probably the early East Scotia Sea spreading centre), and were subsequently modified to transitional peridotites and dunites by interaction with South Sandwich arc magmas. The second dredge locality, near the South Sandwich Trench–Fracture Zone intersection, yielded rocks ranging from lherzolite to harzburgite that could similarly have resulted from a two-stage melting and enrichment process, but involving a more fertile mantle residue and a reacting melt that is transitional between MORB and island arc tholeiite. The South Sandwich peridotites have a similar petrogenetic history to those from Conical Seamount in the Mariana forearc in the sense that both involved interaction between arc magma and pre-existing mantle lithosphere of different provenance. However, the precise compositions of the magma and mantle components vary from location to location according to the precise tectonic setting and tectonic history. Overall, therefore, data from the South Sandwich and Izu–Bonin–Mariana systems emphasise the potential significance of peridotite geochemistry in unravelling the complex tectonic histories of forearcs past and present.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 246: 359-380.
    Publication Date: 2007-10-08
    Description: The chemistry of mafic volcanic rocks and minor intrusions erupted on continents can be used to define sub-continental asthenospheric and lithospheric mantle sources. Data have been collated from Antarctica and the Falkland Islands (adjacent in Gondwana) in order to identify lithospheric mantle sources beneath the continent. The lithosphere-derived magmas include lamproitic and some lamprophyric rocks and end-members in basaltic suites that are interpreted as mixtures of magmas from lithospheric and asthenospheric sources. The lithosphere-derived mafic rocks from Archaean to Middle Proterozoic cratonic and circumcratonic areas of East Antarctica have time-corrected {varepsilon}Nd values of -20 to -3. This demands isolation of the LREE-enriched sources within pockets of stable sub-cratonic lithosphere for more than 1 Ga, consistent with the lithosphere thickness up to 250 km imaged by seismic tomography. In contrast, lithosphere-derived mafic rocks from Middle Proterozoic to Early Palaeozoic areas of West Antarctica, Victoria Land and the Falkland Islands that formed the Gondwana continental margin, have time-corrected {varepsilon}Nd values of -3.6 to +3.5, implying more recent isolation from asthenosphere. In terms of mantle reservoirs, cratonic and circumcratonic areas trend toward EMI, with EMII possibly being a minor component. In contrast, Gondwana margin areas trend toward EMII, with EMI being, at most, a very minor component.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 219: 285-313.
    Publication Date: 2003-01-01
    Description: The South Sandwich Islands are one of the world's classic examples of an intraoceanic arc. Formed on recently generated back-arc crust, they represent the earliest stages of formation of arc crust, and are an excellent laboratory for investigating variations in magma chemistry resulting from mantle processes, and generation of silicic magmas in a dominantly basaltic environment. Two volcanoes are examined. Southern Thule in the south of the arc is a complex volcanic edifice with three calderas and compositions that range from mafic to silicic and tholeiitic to calc-alkaline. It is compared to the Candlemas-Vindication edifice in the north of the arc, which is low-K tholeiitic and strongly bimodal from mafic to silicic. Critically, Southern Thule lies along a cross-arc, wide-angle seismic section that reveals the velocity structure of the underlying arc crust. Trace element variations are used to argue that the variations in both mantle depletion and input of a subducted sediment component produced the diverse low-K tholeiite, tholeiite and calc-alkaline series. Primitive, mantle-derived melts fractionally crystallized by c. 36% to produce the most Mg-rich erupted basalts and a high-velocity cumulitic crustal keel. Plagioclase cumulation produced abundant high-Al basalts (especially in the tholeiitic series), and strongly influenced Sr abundances in the magmas. However, examination of volumetric and geochemical arguments indicates that the silicic rocks do not result from fractional crystallization, and are melts of amphibolitic arc crust instead.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 219: 1-17.
    Publication Date: 2003-01-01
    Description: Intra-oceanic arcs are the simplest type of subduction systems in that they occur where overridding plates of subduction zones consist of oceanic rocks, contrasting with arcs built on continental margins. They comprise some 40% of the subduction margins of the Earth. The better-known examples include the Izu-Bonin-Mariana arc, the Tonga-Kermadec arc, the Vanuatu arc, the Solomon arc, the New Britain arc, the western part of the Aleutian arc, the South Sandwich arc and the Lesser Antilles arc. They are thought to represent the first stage in the generation of continental crust from oceanic materials. They are generally more inaccessible than continental arcs, but, for a variety of reasons, provide insights into processes in subduction zones that are impossible or difficult to glean from the better-studied continental arcs. Intra-oceanic arcs typically have a simpler crustal structure than arcs built on continental crust, although there are significant differences between examples. Geochemically, magmas erupted in intra-oceanic arcs are not contaminated by ancient sialic crust, and their compositions more accurately record partial melting processes in the mantle wedge. They are also the sites of generation of intermediate-silicic middle crust and volcanic rocks, probably representing the earliest stage of generation of andesitic continental crust by partial melting of basaltic lower crust. They are the best locations in which to study mantle flow in the vicinity of subducting slabs using both geophysical and geochemical methods. They are the sites of significant hydrothermal activity and metallogenesis. The fact that their hydrothermal discharges typically occur shallower in the ocean than those from mid-ocean ridge vents means that they have the potential for greater environmental impact.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-01-01
    Description: The East Scotia Ridge, situated in the South Atlantic, is the back-arc spreading centre to the intra-oceanic South Sandwich arc. Samples from the ridge show a wide diversity in erupted magma compositions. Segment E2, in the northern part of the ridge, has an axial topographic high, which contrasts with the rift-like topography common to most of the ridge. Lava compositions in the segment have been modelled by mixing of magmas derived from normal mid-ocean ridge basalt (N-MORB)-like mantle, a mantle plume component similar in composition to that sampled by Bouvet Island and mantle modified by addition of components from the subducting slab. The Bouvet'-like plume signature has higher 87Sr/86Sr, 206Pb/204Pb, Nb/Yb, and lower 143Nd/144Nd and 4He/3He, than the local upper mantle. It can be traced geochemically from the Bouvet Island hot spot to segment E2, via the South American-Antarctic Ridge, which connects the Bouvet triple junction to the South Sandwich subduction system. Four samples dredged from segment E2 have 4He/3He ratios of 85 000-90 200 (8.5-8.0 R/RA, where) R/RA is the 4He/3He ratio normalized to air) and three wax core samples taken from the segment axis have values of 104 300, 101 560 and 176 620 (6.9, 7.1 and 4.1 R/RA). These latter data are similar to values from the South American-Antarctic Ridge which have no discernable plume input. Whilst the dredge samples have a measurably lower 4He/3He ratio than the South American-Antarctic Ridge and samples from the segment axis, these He isotope data contrast with a dominant plume signature recorded by other petrogenetic tracers. This is interpreted to be due to re-melting of an entrained plume component, with an inherent low He concentration, incorporated into the E2 mantle. Helium depletion from the plume component can be seen to be a consequence of mantle processing and does not imply shallow-level degassing prior to entrainment within the upper-mantle-melting zone. As a consequence, He is characterized in the back-arc by values more similar to the upper mantle, whereas lithophile tracers are more influenced by the plume component.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-07-23
    Description: The Antarctic Peninsula (AP) consists of a long lived and uniquely well preserved magmatic arc system. The broad tectonic structure of the AP arc is well understood. However, magmatic processes occurring along the arc are only constrained by regional geophysical and relatively sparse geological data. Key questions remain about the timing, volume, and structural controls on magma emplacement. We present new high resolution aeromagnetic data across Adelaide Island, on the western margin of the AP revealing the complex structure of the AP arc/forearc boundary. Using digital enhancement, 2-D modelling and 3-D inversion we constrain the form of the magnetic sources at the arc/forearc boundary. Our interpretation of these magnetic data, guided by geological evidence and new zircon U-Pb dating, suggests significant Palaeogene to Neogene magmatism formed ~25 per cent of the upper crust in this region (~7500 km 3 ). Significant structural control on Neogene magma emplacement along the arc/forearc boundary is also revealed. We hypothesize that this Neogene magmatism reflects mantle return flow through a slab window generated by Late Palaeogene cessation of subduction south of Adelaide Island. This mantle process may have affected the final stages of arc magmatism along the AP margin.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...