ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 75 (1994), S. 1258-1266 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The results of an experimental program whose sole objective is to investigate the cumulative beam breakup instability (BBU) in electron beam accelerators are presented. The BBU growth rate scalings are examined with regard to beam current, focusing field, cavity Q, and propagation distance. A microwave cavity array was designed and fabricated to excite and measure the cumulative BBU resulting from beam interactions with the deflecting TM110 cavity mode. One phase of this experiment used high Q(≈1000) cavities with relatively large frequency spread (Δf/f0≈0.1%). The observed TM110 mode microwave growth between an upstream (second) and a downstream (tenth) cavity indicated BBU growth of 26 dB for an electron beam of kinetic energy of 750 keV, 45 A, and focused by a 1.1 kG solenoidal field. At beam currents of less than 100 A the experiments agreed well with a two-dimensional continuum theory; the agreement was worse at higher beam currents ((approximately-greater-than)100 A) due to beam loading. The second-phase experiments used lower Q(≈200) cavities with relatively low frequency spread (Δf/f0≈0.03%). Theory and experiment agreed well for beam currents up to 220 A. Distance scaling experiments were also performed by doubling the propagation length. Instability growth reduction experiments using the technique of external cavity coupling resulted in a factor of four decrease in energy in BBU growth when seven internal beam cavities were coupled by microwave cable to seven identical external dummy cavities. A theory invoking power sharing between the internal beam cavities and the external dummy cavities was used to explain the experimental reduction with excellent agreement using an equivalent circuit model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 62 (1987), S. 351-356 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The space-charge wave and the stability of an intense annular electron beam propagating in a metallic pipe are examined. It is shown that the beam can propagate stably in the parameter regime of some proposed experiments where such a beam is used to generate an electromagnetic wake for particle acceleration. Modulation of an intense beam with a large diameter appears promising at high frequencies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 7129-7138 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The channelspark, a low accelerating voltage, high current electron beam accelerator, has been used for ablation of materials applied to thin film deposition. The channelspark operates at accelerating voltages of 10 to 20 kV with ∼1500 A beam currents. The electron beam ionizes a low-pressure gas fill (10–20 mTorr Ar or N2) to compensate its own space charge, allowing ion focused transport. Ablation of TiN, Si, and fused silica has been studied through several plasma diagnostics. In addition, thin films of SiO2 have been deposited and analyzed. Strong optical emission from ionized species, persisting for several microseconds, was observed in the electron beam ablated plumes. Free electron temperatures were inferred from relative emission intensities to be between 1.1 and 1.2 eV. Dye-laser-resonance-absorption photography showed Si atom plume expansion velocities from 0.38 to 1.4 cm/μs for several pressures of Ar or N2 background gas. A complex, multilobed plume structure was also observed, yielding strong indications that an electron beam instability is occurring, which is dependent upon the conductivity of the target. Nonresonant interferometry yielded line-averaged electron densities from 1.6 to 3.7×1023 m−3 near the target surface. Resonant UV interferometry performed on Si neutral atoms generated in the ablation plumes of fused silica targets measured line integrated densities of up to 1.6×1016 cm−2, with the total number of ablated silicon neutrals calculated to be in the range 2.0×1015 to 5.0×1013. Electron beam deposited films of fused silica were microscopically rough, with a thickness variation of 7%. The average SiO2 deposition rate was found to be about 0.66 nm/shot. The electron beam-deposited fused silica films had accurately maintained stoichiometry. Ablated particulate had an average diameter near 60 nm, with a most probable diameter between 40 and 60 nm. For SiO2 targets, the mass of material ablated in the form of particulate made up only a few percent of the deposited film mass, the remainder being composed of atomized and ionized material. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 72 (2001), S. 3095-3099 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A novel experiment to investigate single-surface multipactor on a dielectric surface was developed and tested. The compact apparatus consists of a small brass microwave cavity in a high vacuum system. The cavity is ∼15 cm in length with an outer diameter of ∼10 cm. A pulsed variable frequency microwave source at ∼2.4 GHz, 2 kW peak excites the TE111 mode with a strong electric field parallel to a dielectric plate (∼0.2 cm thickness) that is inserted at midlength of the cavity. The microwave pulses are monitored by calibrated microwave diodes. An electron probe measures electron current and provides temporal measurements of the multipactor electron current with respect to the microwave pulses. Phosphor on the dielectric surface is used to detect multipactor electrons by photoemission. The motivation of this experiment is to test recent theoretical calculations of single-surface multipactor on a dielectric. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 61 (1987), S. 36-44 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effects of the roughness of the cathode surface on the emittance of an electron beam are examined. Tentative scaling laws are suggested which yield the bounds on the beam emittance due to surface roughness for both temperature-limited and space-charge-limited regimes. These formulas are found to be consistent with numerical integration of electron trajectories over a wide range of parameters. In general, roughness-induced beam emittance may be reduced by a factor of 2–5, if the cathode is operated in the space-charge-limited regime rather than in the temperature-limited regime.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 3874-3877 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The coupling of the accelerating cavities to dummy cavities was recently found to reduce beam breakup growth. This article analyzes a more sophisticated model that includes the time delay between coupled cavities and covers the possibilities of wave cutoff and resonance in the coupling path. A dispersion relation is obtained. We show that the peak spatial exponentiation rate of the dominant beam breakup mode is reduced by as much as a factor of 2, and this reduction is insensitive to the coupling path length. Other modes are destabilized, however, but they have lower growth rates, in general.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 70 (1991), S. 4-12 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We calculate the trajectories of electrons emitted from a sharp protrusion with corners, where the electric field is intense and the radius of curvature tends to zero. The calculations include the effects of a longitudinal magnetic field but ignore the space-charge effects. We find that the arbitrarily large electric field at a mathematically sharp corner does not necessarily impart to the electrons an excessive amount of transverse momentum, whether or not the external magnetic field is present. Scaling laws are derived for the beam's transverse displacement in terms of macroscopic quantities, such as anode-cathode voltage drop, gap separation, magnetic field, and the protrusion dimensions. The implication of these findings on the electron sources generated from microtips is addressed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 74 (1993), S. 5877-5879 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: It is shown that an annular electron beam may carry six times as much current as a pencil beam for the same beam breakup (BBU) growth. This finding suggests that the rf magnetic field of the breakup mode is far more important than the rf electric field in the excitation of BBU. A proof-of-principle experiment is suggested, and the implications explored.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 863-872 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The interaction of multipactor discharge and an rf circuit is analyzed with the use of a simple model, in which the multipactor electrons are in the form of a single sheet that is released from the surface with a monoenergetic velocity. An explicit formula is derived for the saturation level of multipactor current in steady state. This formula is given in terms of the secondary electron yield properties of the multipactoring surfaces and the level of the external rf drive. It is valid when the quality factor Q of the rf circuit is higher than 10, in which case the space charge effects do not contribute significantly to the saturation level. When it occurs, the steady state multipactor may consume tens of percents of the external rf power that is needed to sustain the gap voltage. Numerical computations determine the accessibility to steady state from the transient buildup. In particular, they suggest various conditions for the multipactor to exhibit in a burst mode or in a steady state mode. The dynamic linkage of the rf circuit and material properties allows the construction of the susceptibility diagram for various materials, within the limitations imposed by the present model. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 4404-4408 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A simple circuit model is used to investigate the transit-time oscillator (TTO) driven by a high-current diode. A novel condition for the onset of oscillation is derived in terms of the diode impedance. It is shown that a low impedance is required for the production of high-power microwaves in a TTO. The initial growth is calculated, and the saturation level is numerically computed using the one-dimensional model. These one-dimensional (1-D) results are in excellent agreement with a full scale two-dimensional Particle-in-Cell simulation. The success of the much simpler 1-D model allows a close examination of the roles played by the convection current and by the displacement current, as well as the modification in the transit time due to the intense space charge within the gap. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...