ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Debris lobes with characteristic lengths, widths, and thickness of 30–200 km, 2–10 km, and 10–50 m, respectively, represent the main building blocks of deep-sea fans along the Norwegian–Barents Sea continental margin. Their formation is closely related to the input of clay-rich sediments to the upper continental slope by glaciers during periods of maximum ice advance. It is likely that slide release was a consequence of an instability arising from high sedimentation rates on the upper continental slope. The flow behavior of the debris lobes can be described by a Bingham flow model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Geo-marine letters 13 (1993), S. 227-234 
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A large submarine slide on the southern flank of the Bear Island Trough Mouth Fan, southwestern Barents Sea continental slope, has a run-out distance of about 400 km, a total volume of about 1100 km3, and is younger than 330 ka. Three seismic units, comprising mainly hemipelagic sediments has partly filled the slide scar. An increased sedimentation rate on the Bear Island Trough Mouth Fan from Late Pliocene time, probably in combination with abundant earthquakes, is the most likely cause of the slide. Based on these and previous studies, we suggest that large-scale slides were important sediment transport processes during Plio-Pleistocene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Geo-marine letters 18 (1998), S. 26-33 
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  On the southwestern Barents Sea shelf, sediments containing gas hydrates that overlie free gas have been inferred from multichannel seismic data. The volume of suspected gas hydrate is tentatively estimated to about 1.9×108 m3. The gas hydrate zone probably formed from thermogenic gas leaking from a deeper source. The hydrate zone may have thickened during the Neogene by including gas originally trapped as free gas below the hydrate following a significant downward migration of the isotherms caused by erosion and/or subsidence. Within the present oceanographic conditions, gas hydrate is suspected to be stable or slowly decomposing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Geologische Rundschau 85 (1996), S. 338-349 
    ISSN: 0016-7835
    Keywords: Key words Western Barents Sea ; Middle and Late Pleistocene ; Glacier-fed submarine fan ; Comparative study
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The Middle and Late Pleistocene succession on the glacier-fed fan at the mouth of Storfjorden trough was studied using high-resolution seismic data. Seven glacial advances to the shelf break during Middle and Late Pleistocene resulted in episodic high sediment input to the fan with real sedimentation rates of up to 172 cm/1000 years, separated by sediment-starved interstadials and interglacials. On the upper fan the high sediment input resulted in frequent slides and slumps, generating debris flows which dominate the mid-fan strata. Compared with the larger neighbouring Bear Island trough mouth fan, the Storfjorden trough mouth fan has a steeper fan gradient, narrower, thinner and shorter debris flow deposits and lower frequency of large scale sliding. Glacier-fed submarine fans receive their main sediment input from a glacier margin at the shelf break, as opposed to river-fed fans where sediment input occurs through a channel-levee complex. As a result, the depocentre of a river-fed fan is found on the mid-fan and the upper slope is mainly an area of sediment bypass, whereas the glacier-fed fan has an elongated depocentre across the uppermost fan. The river-fed fans are dominated by deposition from turbidity currents, whereas glacier-fed fans are dominated by debris flow deposits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 85 (1996), S. 338-349 
    ISSN: 1437-3262
    Keywords: Western Barents Sea ; Middle and Late Pleistocene ; Glacier-fed submarine fan ; Comparative study
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Middle and Late Pleistocene succession on the glacier-fed fan at the mouth of Storfjorden trough was studied using high-resolution seismic data. Seven glacial advances to the shelf break during Middle and Late Pleistocene resulted in episodic high sediment input to the fan with real sedimentation rates of up to 172 cm/1000 years, separated by sediment-starved interstadials and interglacials. On the upper fan the high sediment input resulted in frequent slides and slumps, generating debris flows which dominate the mid-fan strata. Compared with the larger neighbouring Bear Island trough mouth fan, the Storfjorden trough mouth fan has a steeper fan gradient, narrower, thinner and shorter debris flow deposits and lower frequency of large scale sliding. Glacier-fed submarine fans receive their main sediment input from a glacier margin at the shelf break, as opposed to river-fed fans where sediment input occurs through a channel-levee complex. As a result, the depocentre of a river-fed fan is found on the mid-fan and the upper slope is mainly an area of sediment bypass, whereas the glacier-fed fan has an elongated depocentre across the uppermost fan. The river-fed fans are dominated by deposition from turbidity currents, whereas glacier-fed fans are dominated by debris flow deposits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-03-01
    Description: Trough mouth fans contain information about the evolution of high-latitude continental margins, including rates of glacial sedimentation and hinterland erosion. Here, the late Cenozoic evolution of high-gradient trough mouth fans and canyons on the Troms margin, northern Norway, is reconstructed. Paleocanyons were active prior to the Quaternary glaciations. Glaciomarine and glaciofluvial conditions prevailed between ca. 2.7 Ma and ca. 1.5 Ma, and ice sheets possibly reached the paleo–shelf break at least once. The minimum average sedimentation rate of this period was 0.22 m/k.y. From ca. 1.5 Ma to ca. 0.7 Ma, the glaciations intensified, and fast-flowing ice streams reaching the shelf break were established in the cross-shelf troughs. Subglacial deformation till was deposited at the outer shelf and later reworked by debris flows and turbidity currents. The Fennoscandian Ice Sheet started to route much of its ice mass to the north and south of the study area, and so the Troms margin possibly was a low-ice-flow sector from this time, with a minimum average sedimentation rate of 0.15 m/k.y. During the last ca. 0.7 m.y., ice streams continued to traverse the troughs, while sluggish-flowing ice prevailed on the banks. A minimum average sedimentation rate of 0.14 m/k.y. is estimated for this period. The minimum total erosion and erosion rate for the Quaternary are 50–140 m and 0.02–0.05 m/k.y., respectively. Compared with previous studies from other areas, this implies up to one order of magnitude variation in average glacial erosion rates along the western sector of the Fennoscandian–Barents Sea ice sheets. This is interpreted to be due to the size and bedrock composition of the catchment areas and the timing of ice growth and ice-sheet dynamics. In addition, the steep preglacial continental slope promoted high sediment flow velocity for the glacigenic sediments, causing much of the debris flows to transform into turbidity currents, which efficiently transported sediments across the slope and thereby maintained its steep gradient.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-10-15
    Description: High-arctic fjords, for example, van Keulenfjorden on Spitsbergen, provide valuable palaeoenvironmental archives as they typically contain landforms and sediment sequences that document past changes in glacial activity with high temporal resolution. Van Keulenfjorden was covered with a grounded glacier during the last glacial, and it was deglaciated between c . 11.8 and 11.3 cal. ka BP. The retreat of the ice front accelerated from approximately 80 to 190 m/a during the deglaciation. The maximum late Holocene glacier extent occurred after surge-like advances of the glacier Nathorstbreen between 2790 and 2610 cal. yr BP (i.e. during a period with the coldest climatic conditions on Svalbard). This maximum extent was reached approximately 2600 years earlier than inferred for most fjords on Svalbard, suggesting that surge-like glacier advances on Svalbard can occur under variable climatic conditions. The time interval between the advances of Nathorstbreen around 2.7 ka BP was approximately 100–150 years. This is comparable to the last and only historically known quiescent phase of Nathorstbreen of c . 120 years between the late 19th century and the most recent surge from 2003 to 2012.
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-03-04
    Description: Interpretation of seismic data from the Sørvestsnaget Basin, southwest Barents Sea, demonstrates gradual middle Eocene basin infilling (from the north) generated by southward-prograding shelf-margin clinoforms. The basin experienced continued accommodation development during the middle Eocene because of differential subsidence caused by the onset of early Eocene sea-floor spreading in the Norwegian-Greenland Sea, faulting, salt movement, and different tectonic activity between the Sørvestsnaget Basin and Veslemøy high. During this time, the margin shows transformation from an initially high-relief margin to a progradation in the final stage. The early stage of progradation is characterized by the establishment of generally oblique clinoform shifts creating a flat shelf-edge trajectory that implies a gentle falling or stable relative sea level and low accommodation-to-sediment supply ratio (〈1) in the topsets. During the early stage of basin development, the high-relief margin, narrow shelf, stable or falling relative sea level, seismicity, and presumably high sedimentation rate caused accumulation of thick and areally extensive deep-water fans. Seismic-scale sandstone injections deform the fans. A fully prograding margin developed when the shelf-to-basin profile lowered, apparently because of increased subsidence of the northern part. This stage of the basin development is generally characterized by the presence of sigmoid clinoform shifts creating an ascending shelf-edge trajectory that is implying steady or rising relative sea level with an accommodation-to-sediment supply ratio of greater than 1, implying sand accumulation on the shelf. This study suggests that some volume of sand was transported into the deep water during relative sea level rise considering the narrow shelf and inferred high rates of sediment supply.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018
    Description: 〈p〉Trough mouth fans (TMFs) are sediment depocentres that form along high-latitude continental margins at the mouths of some cross-shelf troughs. They reflect the dynamics of past ice sheets over multiple glacial cycles and processes operating on (formerly) glaciated continental shelves and slopes, such as erosion, reworking, transport and deposition. The similarities and differences in TMF morphology and formation processes in the Arctic and Antarctic regions remain poorly constrained. We analyse the dimensions and geometries of 15 TMFs from Arctic and Antarctic margins and the grain size distribution of 82 sediment cores centred on them. We compare the grain size composition of sub- and proglacial diamictons deposited on the shelves and glacigenic debris flows deposited on the adjacent TMFs and find a significant difference between Arctic and Antarctic margins. Antarctic margins show a coarser grain size composition for both glacigenic debris flows and shelf diamictons. This significant difference provides insight into high-latitude sediment input, transportation and glacial–interglacial regimes. We suggest that surface runoff and river discharge are responsible for enhanced fine-grained sediment input in the Arctic compared with the Antarctic.〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-11-22
    Description: Limited data on the past dynamics of the Greenland Ice Sheet, exceeding the ice-core records, have led to partly contradictory reconstructions. Whereas the Scoresby Sund sector of the Greenland Ice Sheet has been suggested to be stable and not much larger than at present during the peak Pleistocene glaciations, the southeastern sector of the ice sheet has been inferred to be much more dynamic. Here we present seismic data showing that glacigenic debris-flow deposits dominate the younger than ca. 2.58 Ma succession of the Scoresby Sund trough mouth fan on the East Greenland continental margin, suggesting much more frequent expansions of the Greenland Ice Sheet to the shelf break than found previously. From our new observations of the Pleistocene stratigraphy, we revise previous findings and conclude that the Scoresby Sund sector of the Greenland Ice Sheet during the Pleistocene (1) developed in line with other parts of the East Greenland Ice Sheet, and (2) was more dynamic and sensitive to past climatic changes than hitherto realized. This rapid response of the glacier to climate forcing indicates how dynamic is the glacier ice front and what one might expect of the glacier as the influences of climate warming become more pronounced.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...