ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-07-06
    Description: The aim of the study is to determine the energy consumption of the extrusion-cooking process of corn straw under various conditions (screw speed, moisture content), water absorption measurements and water solubility indices as well as biogas efficiency evaluation. The extrusion-cooking of corn straw was carried out using a single screw extruder with L/D = 16:1 at various rotational screw speeds (70, 90, and 110 rpm) and with various initial moisture content of raw material (25 and 40%). Prior to the process, the moisture content of the raw material was measured, and next, it was moistened to 25 and 40% of dry matter. For example, at 70 rpm extruder screw speed, the temperature range was 126–150 °C. Energy consumption of straw pretreatment through extrusion-cooking was assessed in order to evaluate the possibility of using the process in an agricultural biogas plant. Biogas and methane efficiency of substrates after extrusion was tested in a laboratory scale biogas plant and expressed as a volume of cumulative methane production for fresh matter, dry matter, and dry organic matter. Pretreated corn straw moistened to 25% and processed at 110 rpm during the extrusion-cooking processing produced the most advantageous effect for methane and biogas production (51.63%) efficiency as compared to corn straw without pretreatment (49.57%). Rotational speed of the extruder screw influenced biogas and methane production. With both dry matter and dry organic matter, the increase of rotational speed of the extruder screw improved the production of cumulated biogas and methane. Pretreatment of corn straw has a positive effect on the acquisition of cumulated methane (226.3 Nm3 Mg−1 for fresh matter, 243.99 Nm3 Mg−1 for dry matter, and 254.83 Nm3 Mg−1 for dry organic matter). Preliminary analysis of infrared spectra revealed changes in the samples also at the molecular level, thus opening up the possibility of identifying marker bands that account for specific degradation changes.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-03-19
    Description: Biodegradable materials are used in the manufacture of packaging and compostable films and various types of medical products. These have demonstrated high potential in medical applications: cardiac, vascular and orthopaedic conditions in adults as well in children. In our research, the extrusion-cooking technique was used to obtain environmentally friendly loose-fill foams as packaging. Potato starch was the basic raw material. Polyvinyl alcohol was used as an additive in the amount of 1%, 2% and 3% to replace starch. The components were mixed and moistened with water to various initial moisture contents of the blend (17%, 18% and 19%). The processing of starch foams employed the TS-45 single screw extruder-cooker (Gliwice, Poland) with the L/D ratio of 12. The foams were processed with various screw speeds (100 and 130 rpm) and with two types of forming dies (circular and ring die). The extrusion-cooking process efficiency (kg h−1) and the energy consumption (kWh kg−1) during the processing were also measured. The results showed that the processing efficiency of potato starch foams varied depending on the level of polyvinyl alcohol, the shape of the forming die and the screw speed applied. The analysis of energy consumption, mechanical properties and FTIR analyses demonstrated that the type of the forming die and the initial moisture level had the most significant impact on specific energy demands during the processing of potato starch-based foams.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-25
    Description: The article presents the research made on the effects of methods of pressure-thermal agglomeration of corn bran, as well as the influence of processing parameters on selected physicochemical properties and biogas efficiency. Corn bran moistened to four levels of moisture content was used for the tests: 20%, 25%, 30% and 35% of dry matter. The pressure-thermal treatment was carried out with the use of a Brikol SJ25 pellet maker and a TS-45 single-screw extruder. In the tests of the extrusion-cooking process, three rotational speeds of the extruder screw were applied: 70, 90 and 110 rpm. The following characteristics were examined: efficiency of the extrusion-cooking and pelleting process, as well as the energy consumption. The water absorption index (WAI), the water solubility index (WSI), bulk density, kinetic strength, structure analysis by the ART/FTIR method, energy potential and the efficiency of cumulated biogas and cumulated methane per dry mass, as well as fresh mass and fresh organic matter and a series of microscopic pictures were completed. The analysis of the ATR/FTIR infrared spectra of the tested pelleted and extruded samples showed clear changes at the molecular level. Biogas production of extruded corn bran increased by several percent, as compared to untreated material.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...