ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Uppsala : Dept. of Mineralogy and Petrology, Univ.
    Associated volumes
    Call number: M 582
    In: UUDMP research report
    Type of Medium: Monograph available for loan
    Pages: 30 S., [12] Bl.
    Series Statement: UUDMP research report 56
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-10-08
    Description: We report a direct comparison of scaled analogue experiments to test the reproducibility of model results among ten different experimental modelling laboratories. We present results for two experiments: a brittle thrust wedge experiment and a brittleviscous extension experiment. The experimental set-up, the model construction technique, the viscous material and the base and wall properties were prescribed. However, each laboratory used its own frictional analogue material and experimental apparatus. Comparison of results for the shortening experiment highlights large differences in model evolution that may have resulted from (1) differences in boundary conditions (indenter or basal-pull models), (2) differences in model widths, (3) location of observation (for example, sidewall versus centre of model), (4) material properties, (5) base and sidewall frictional properties, and (6) differences in set-up technique of individual experimenters. Six laboratories carried out the shortening experiment with a mobile wall. The overall evolution of their models is broadly similar, with the development of a thrust wedge characterized by forward thrust propagation and by back thrusting. However, significant variations are observed in spacing between thrusts, their dip angles, number of forward thrusts and back thrusts, and surface slopes. The structural evolution of the brittle-viscious extension experiments is similar to a high degree. Faulting initiates in the brittle layers above the viscous layer in close vicinity to the basal velocity discontinuity. Measurements of fault dip angles and fault spacing vary among laboratories. Comparison of experimental results indicates an encouraging overall agreement in model evolution, but also highlights important variations in the geometry and evolution of the resulting structures that may be induced by differences in modelling materials, model dimensions, experimental set-ups and observation location.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-13
    Description: Stratigraphical, sedimentological and structural data and a Bouguer gravity map of Medjez-El-Bab (MEB) in Northern Tunisia are used to illustrate a Cretaceous example of salt extrusion on a passive continental margin. Located just south of the Teboursouk thrust front (a preferential décollement surface used by the continuous Tertiary shortening in this area), the MEB structure is a simple N40°E box anticline. Removing the two Tertiary foldings (Eocene and Miocene) leads to the exposure of the original feature of a simple submarine ‘salt glacier’. The Triassic salt rocks appear as an Albian interstratified body between two Cretaceous series with stratigraphic normal polarity, suggesting a bedding parallel extrusion (at the sediment–water interface) of the Triassic salt in Cretaceous times. The formation of such salt extrusions are associated with extensional faulting (probably both in the cover and basement), the presence of a slope and basinwards salt flow. This scenario is similar to the allochthonous salt described in other salt provinces, characterizing passive margins.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-13
    Description: Salt diapirs preferably rise above basement faults in extensional basins. A series of analogue and numerical models were developed in order to assess the supply of salt from the footwall and hanging wall to a diapir and to study the influence of basin inversion on the diapir development. The modelling scenario was based on the Klodawa Salt Structure evolution (central Poland). The experiments show that the ductile material derived from the footwall constitutes the dominant portion of the diapir developed due to model extension, and this material occurs both in the footwall and hanging wall parts of the diapir. Shortening of the analogue models resulted in thinning of the diapir and shifting its stem onto the footwall. Ductile material become redistributed inside the diapir, however footwall material still prevails in the diapir structure. Results from the numerical models show that the magnitude of the basement fault governs the amount of salt supply to a diapir across the fault and that there is a differential salt supply from the hanging wall and footwall with time.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 253: 117-134.
    Publication Date: 2007-10-08
    Description: Results of scaled sandbox models, containing three viscous layers located at different geographic and stratigraphic levels simulating three evaporitic units in the South Pyrenean Triangle Zone, and interpreted field data are presented here to explain structural variation and kinematics in shortened areas containing multiple weak horizons acting as detachments. In the Southern Pyrenean Triangle Zone, the Beuda, Cardona and Barbastro thrust fronts have similar geometric features to those developed in the models, suggesting that they could have formed and evolved in a similar way. These deformation fronts are not always perpendicular to the regional shortening direction. Instead, their direction is governed by the initial pinch-out of the viscous horizonts. Model results show that triangle zones form when: (1) deformation is transferred to weak horizons located at higher stratigraphic levels, and (2) the deformation front reaches the pinch-out of the weak horizons. Model results also show that the rheology of the detachment horizonts controls the geometry of the deformation front. Weak detachments (Cardona Formation, and pure silicone in the models) promote folding and back-vergent structures, and thus formation of triangle zones at the deformation front, irrespective of the location of the thrust front relative to the pinch-out of the viscous detachment. However, over strong (more viscous) detachments (Barbastro and Beuda formations, and impure silicone in the models), folds that eventually evolve to thrusts are dominant. In such cases, backthrusts form only at the pinch-out of the detachment layer. In cases where no viscous detachment is present, no backthrusts form, and therefore the thrust front does not develop a triangle zone geometry. Instead, a foreland-vergent piggyback sequence of thrusts forms. Model results show that the stratigraphic level of a detachment governs size, geometry and spacing of the imbricates formed above it.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-06-01
    Print ISSN: 0191-8141
    Electronic ISSN: 1873-1201
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-11-01
    Description: Protrusions and lenses of serpentinite-matrix melanges occur at several places along the thrust faults of the Zagros Suture Zone. They separate the lower allochthonous thrust sheet, the Lower Allochthon' (i.e. Walash-Naopurdan nappe), of Paleocene-Eocene age from sediments of the Arabian platform and the upper thrust sheet of Mesozoic, ophiolite-bearing terranes termed the Upper Allochthon' (i.e. Gemo-Qandil nappe). The serpentinite-matrix melanges occur mostly as stretched bodies (slices) on both sides of the Lower Allochthon (Hero, Halsho and Pushtashan (HHP) and Galalah, Qalander and Rayat (GQR)). Their overall chondrite-normalized rare earth element (REE) patterns form two main groups. Group One exhibits enrichment in the total REEs (〉 1 x chondrite) whereas the Group Two pattern shows depletion (i.e. 〈 1 x chondrite). Bulk-rock MORB-normalized profiles of Group Two are almost flat in the MREE-HREE region with flattening profiles in the Gd-Lu range (〉 3 times the MORB composition). In comparison with Group One, Group Two has extremely high REE content and displays variable depletions in the moderately incompatible high-field-strength elements (HFSEs) (Zr, Hf, Y) relative to their adjacent REEs. The REEs in the GQR serpentinite-matrix melanges have a noticeably high LREE content, and a positive Eu anomaly, and their HREE content never reaches more than 1 x chondrite (i.e. 〈 0.01 to 1 x chondrite). The latter indicates that the hemipelagic sedimentary, melt-like components (i.e. high LREE, U/La, La/Sm and low Ba/Th) control the geochemical peculiarities of this type of serpentinite. The HHP serpentinite-matrix melanges, however, are either equally divided between the two REE pattern groups (e.g. Hero, Halsho) or inclined towards Group One (e.g. Pushtashan). Contrary to GQR serpentinites, the variation in HHP serpentinite-matrix melanges spans a compositional spectrum from U/La-rich to more Ba/Th-rich. Such ratio variations reflect the large variation in these two subducted sedimentary components (i.e. carbonate and hemipelagic sediment mix). The obvious differences in the trace element signatures of the GQR and HHP serpentinite-matrix melanges might be related to plate tectonic parameters such as convergence rate, subduction age and thickness and type of subducted slab. It is more likely that the influx of subducted components to the mantle wedge relied heavily on the composition of the sedimentary inputs. These vary considerably with time from the relatively deepwater hemipelagic sediments (Qulqula Radiolarite Formation) to platform carbonate sediments (Balambo limestone). The trace element signatures of the GQR and HHP serpentinite-matrix melanges might suggest multi-staging of the allochthonous sheet emplacement on the Arabian platform sediments.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-11-01
    Description: In this study, two angular unconformities are found and analysed for the first time in the Mesozoic-Cenozoic succession in the northwestern segment of the Zagros fold-thrust belt (ZFTB) in the Kurdistan Region. The first unconformity exists between Lower Cretaceous and Paleocene-Eocene rocks and the second between the Campanian Shiranish Formation and the Maastrichtian Tanjero Formation. Each of these unconformities is found in two different localities in the Zagros Imbricate Zone (i.e. the highly deformed zone immediately SW of the Zagros Suture) of the ZFTB of the Kurdistan Region near the border with Iran. The study uses recent geological mapping, structural and stratigraphic analyses in addition to using previous biozonation of the stratigraphic units that bound the two unconformities. The first unconformity was initiated with obduction of the ophiolite and Lower Cretaceous radiolarite onto the passive margin of the Arabian plate. This unconformity formed during an early phase of the Zagros orogeny, which is associated with the developing of a foreland basin, and resulted in the folding of the radiolarites and their uplift to form high-relief land. The erosion of this high-relief land resulted in the formation of the Paleocene-Eocene Red Bed Series and their deposition on the folded radiolarite. The timing of the deformation that caused this unconformity is hard to determine; however, its stratigraphic position may suggest that it possibly is related to post-Cenomanian movements. The second unconformity is between the tilted Campanian Shiranish Formation (hemipelagite) and Tanjero Formation (500 m of conglomerate in the more proximal area). These unconformities indicate that deformation and uplift of the sedimentary units was variable during ophiolite obduction in this part of the ZFTB. We argue that deformation, ophiolite obduction and collision are likely to have varied in space and time along the c. 2000 km long ZFTB.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-11-01
    Description: Accessory chrome spinels are scattered throughout the serpentinite masses in two allochthonous thrust sheets belonging to the Penjween-Walash sub-zone of the northwestern Zagros Suture Zone in Kurdistan. Based on field evidence, the serpentinites are divided into two groups: (1) highly sheared serpentinites (110-80 Ma), which occupy the lower contact of the ophiolitic massifs of the Upper Allochthonous sheet (Albian-Cenomanian age), and (2) ophiolitic melange serpentinites of mixed ages (150 and 200 Ma) occurring along thrust faults on the base of the volcano-sedimentary segment (42-32 Ma) of the Lower Allochthonous sheet. The Cr-spinels of both groups show a wide range of YCr (Cr/(Cr + Al) atomic ratio) from 0.37 to 1.0, while the XMg (Mg/(Mg + Fe2+) atomic ratio) ranges from 0.0 to 0.75. Based on the Cr-spinel compositions of the entire dataset and in conjunction with back-scattered electron imaging, from core to rim, three spinel stages have been recognized: the residual mantle stage, a Cr-rich stage and a third stage showing a very narrow magnetite rim. These three stages are represented by primary Cr-spinel, pre-serpentinization metamorphosed spinel and syn- or post-serpentinization spinel, respectively. The chemical characteristics of primary (first-stage) Cr-spinels of both serpentinite groups indicate a tectonic affinity within a fore-arc setting of peridotite protoliths. The second stage indicates that Cr-spinels have undergone subsolidus re-equilibration as a result of solid-solid reaction during pre-serpentinization cooling of the host rock. Here the primary Cr-spinel compositions have been partly or completely obscured by metamorphism. During the third stage, the Cr-spinels have undergone solid-fluid re-equilibration during syn- or post-serpentinization processes. Both the second and third stages point to diachronous metamorphic paths resulting from continuous tectonic evolution influenced by either slow or fast uplift of mantle protoliths. In the fast metamorphic paths, the primary chrome spinels are flanked by a very narrow magnetite rim. The presence of two groups of distally separated serpentinites with different emplacement ages and fore-arc tectonic affinity could indicate that the closure of the Tethys Ocean culminated in two fortuitous subduction processes.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-02-01
    Description: The switch in direction of convergence between Central Iran and the Eurasian Plate is believed to have a significant impact on the structural style in the Alborz Mountains, in the north of Iran. To understand the deformation pattern and investigate the influence of the South Caspian Basin kinematics since the middle Miocene on the structural styles and active tectonics of the Alborz Mountains, a series of scaled analogue models were prepared, in which passively layered loose sand simulating the sedimentary units were subjected to orthogonal and subsequently oblique shortening by a rigid indenter. Model results indicate that during the shortening, an arcuate-shaped foreland-vergent imbricate stack forms in front of the indenter. The orthogonal shortening is characterized by a prevailing right-lateral and left-lateral oblique-slip motion in the east and west of the model, respectively. This shift in kinematics contradicts the proposed preneotectonic (orthogonal) model of the Alborz. However, during oblique shortening, model results show that deformation is mainly accommodated by left-lateral transpression within the sand wedge and internal deformation. Oblique shortening is consistently accommodated by continued left-lateral motion on the west-northwest-trending oblique thrusts, whereas the east–west-trending thrusts and the preexisting east-northeast-trending right-lateral oblique thrusts reactivate as left-lateral oblique faults. Precise monitoring of the model surface also illustrates partitioning of shortening into the foreland-vergent left-lateral thrusting in the south and hinterland-vergent back thrusting in the north. These model results are generally consistent with field observations and GPS data of structure and kinematics of the Alborz Mountains.
    Print ISSN: 2324-8858
    Electronic ISSN: 2324-8866
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...