ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2019-03-25
    Description: In this paper we introduce a five-fold approach to open science comprised of open data, open-source software (that is, programming and modeling tools, model code, and numerical solvers), as well as open-access dissemination. The advantages of open energy models are being discussed. A fully open-source bottom-up electricity sector model with high spatial resolution using the Julia programming environment is then being developed, describing source code and a data set for Germany. This large-scale model of the electricity market includes both generation dispatch from thermal and renewable sources in the spot market as well as the physical transmission network, minimizing total system costs in a linear approach. It calculates the economic dispatch on an hourly basis for a full year, taking into account demand, infeed from renewables, storage, and exchanges with neighboring countries. Following the open approach, the model code and used data set are fully publicly accessible and we use open-source solvers like ECOS and CLP. The model is then being benchmarked regarding runtime of building and solving against a representation in GAMS as a commercial algebraic modeling language and against Gurobi, CPLEX, and Mosek as commercial solvers. With this paper we demonstrate in a proof-of-concept the power and abilities, as well as the beauty of open-source modeling systems. This openness has the potential to increase the transparency of policy advice and to empower stakeholders with fewer financial possibilities.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-01
    Print ISSN: 0360-5442
    Electronic ISSN: 1873-6785
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-07
    Description: Demand-side mitigation strategies have been gaining momentum in climate change mitigation research. Still, the impact of different approaches in passenger transport, one of the largest energy demand sectors, remains unclear. We couple a transport simulation model to an energy system optimisation model, both highly disintegrated in order to compare those impacts. Our scenarios are created for the case of Germany in an interdisciplinary, qualitative-quantitative research design, going beyond techno-economic assumptions, and cover Avoid, Shift, and Improve strategies, as well as their combination. The results show that sufficiency - Avoid and Shift strategies - have the same impact as the improvement of propulsion technologies (i.e. efficiency), which is reduction of generation capacities by one quarter. This lowers energy system transformation cost accordingly, but requires different kinds of investments: Sufficiency measures require public investment for high-quality public services, while efficiency measures require individuals to purchase more expensive vehicles at their own cost. These results raise socio-political questions of system design and well-being. However, all strategies are required to unleash the full potential of climate change mitigation.
    Keywords: ddc:330
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Format: application/pdf
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...