ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-01-01
    Print ISSN: 0149-0419
    Electronic ISSN: 1521-060X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Physics
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: A new media calibration system (MCS) has been implemented at the Goldstone complex of the DSN (Deep Space Network). It is intended to calibrate the delay of radio signals imposed by the neutral atmosphere. The system provides periodic measurements of both the static dry and fluctuating wet components of this delay. In particular, the system will calibrate the fluctuations in line of sight path delay due to atmospheric water vapor that we believe will dominate the error budget for several radio science and radio astronomy experiments. We have compared two of these media calibration systems with a connected element interferometer on a 21 km baseline. In this report we describe a total of 30 observations in which a radio source was tracked for an hour or more and the delay residuals then calibrated using the MCS. The accuracy of the comparison appears to be limited by systematic errors in the interferometer, which are under investigation. However, our results do indicate that the MCS can meet or exceed the two-way Allan standard deviation specification of 1.5 x 10( exp -15) on time scales of 2,000 - 10,000 sec, as required by the Cassini GWE (Gravitational Wave Experiment) for two way Doppler tracking.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry General Meeting Proceeding; 194-198; NASA/CP-2002-210002
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: We have completed a new generation of water vapor radiometers (WVR), the A- series, in order to support radio science experiments with the Cassini spacecraft. These new instruments sense three frequencies in the vicinity of the 22 GHz emission line of atmospheric water vapor within a 1 degree beamwidth from a clear aperture antenna that is co-pointed with the radio telescope down to 10 degree elevation. The radiometer electronics features almost an order of magnitude improvement in temperature stability compared with earlier WVR designs. For many radio science experiments, the error budget is likely to be dominated by path delay fluctuations due to variable atmospheric water vapor along the line-of-sight to the spacecraft. In order to demonstrate the performance of these new WVRs we are attempting to calibrate the delay fluctuations as seen by a radio interferometer operating over a 21 km baseline with a WVR near each antenna. The characteristics of these new WVRs will be described and the results of our preliminary analysis will be presented indicating an accuracy of 0.2 to 0.5 mm in tracking path delay fluctuations over time scales of 10 to 10,000 seconds.
    Keywords: Meteorology and Climatology
    Type: International VLBI Service for Geodesy and Astrometry: 2000 General Meeting Proceedings; 274-279; NASA/CP-2000-209893
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We will discuss techniques for optima1 integration of atmospheric measurements from collocated GPS receiver, pointed WVR, and a barometer, capitalizing on the unique strength of each sensor, and minimizing the impact of the sensor's weaknesses. The goal is to improve our ability to estimate line of sight (LOS) total atmospheric delay, which is required in support of certain high precision applications, such as radio science, and deep space navigation. The benefits from improved atmospheric sensing extend to many other applications such as geodesy and time transfer.
    Keywords: Communications and Radar
    Type: European Geoscience Union; Apr 24, 2005; Vienna; Austria
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...