ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Melbourne, Australia : Blackwell Science Pty
    The @island arc 8 (1999), S. 0 
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Remarkable changes in volcanism and tectonism have occurred in a synchronous manner since 1.5–2 Ma at the junction of the Southwest Japan Arc and the Ryukyu Arc. Although extensive volcanism occurred in Kyushu before 2 Ma, the subduction-related volcanism started at ca 1.5 Ma, forming a NE–SW trend volcanic front, preceded by significant changes in whole-rock chemistry and mode of eruptions at ca 2 Ma. The Median Tectonic Line has intensified dextral motion since 2 Ma, with a northward shift of its active trace of as much as 10 km, accompanied by the formation of rhomboidal basins in Central Kyushu. Crustal rotation and incipient rifting has also occurred in South Kyushu and the northern Okinawa Trough over the past 2 million years. We emphasize that the commencement age of these events coincides with that of the transition to the westward convergence of the Philippine Sea plate, which we interpret as a primary cause of these synchronous episodes. We assume that the shift in subduction direction led to an increase of fluid component contamination from subducted oceanic slab, which then produced island-arc type volcanism along the volcanic front. Accelerated trench retreat along the Ryukyu Trench may have caused rifting and crustal rotation in the northern Ryukyu Arc.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 51 (1989), S. 41-50 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Drill-hole, geochronologic, and gravity data identify the buried Shishimuta caldera beneath post-caldera lava domes and lacustrine deposits in the center of the Hohi volcanic zone. The caldera is the source of the Yabakei pyroclastic flow, which erupted 1.0 Ma ago with a bulk volume of 110 km3. The caldera is a breccia-filled funnel-shaped depression 8 km wide and 〉 3 km deep with a V-shaped negative Bouguer gravity anomaly up to 36 mgal. Neither ring vents nor resurgence was recognized; instead, post-caldera monogenetic volcanism in an extensional setting dominated the area. The andesitic breccia has a relatively low density and fills the caldera; it possibly formed by fragmentation of disrupted roof rock during the violent Yabakei eruption and related collapse. Fewer normal faults and shallow microearthquakes occur inside the caldera than around it, possibly because rocks beneath the caldera are structurally incoherent. A profile of Shishimuta caldera may be more elongated vertically, and have a more intensely fractured zone, than that of a Valles-type caldera.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 52 (1990), S. 325-333 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Tosu pyroclastic flow deposit, a low-aspect-ratio ignimbrite (LARI), has widely distributed breccia facies around Aso caldera, Japan. The proximal facies, 9–34 km away from the source, consists of 3 different lithofacies, from bottom to top: a lithic-enriched and fines-depleted (FD) facies, a lithic-enriched (LI) facies with an ash matrix, and a fines- and pumice-enriched (NI) facies. Modes of emplacement of FD, LI, and NI are interpreted as ground layer, 2b-lithic-concentration zone, and normal ignimbrite, respectively. These stratigraphic components in the Tosu originated from the flow head (FD) and the flow body (LI and NI), and were generated by a single column collapse event. Remarkably thick FD and LI, in contrast to thin NI, suggest that due to high mobility most ash and punice fragments in the Tosu were carried and deposited as NI in the distal area. Heavier components were selectively deposited as FD and LI in the proximal area. The rate of falloff of lithic-clast size in the Tosu shows an inflection at 20 km from the source. In a survey of well-documented pyroclastic flows, the inflection distance of a LARI is generally greater than that of a high-aspect-ratio ignimbrite, so that the eruption of the former is probably more intense than the latter.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 51 (1989), S. 315-332 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract More than 5000 km3 of magmatic material was erupted in Pliocene-Pleistocene times in a volcano-tectonic depression, i. e., the Hohi volcanic zone (HVZ) in central Kyushu, Japan. The eruptive deposits consist mainly of andesite lava flows and large-scale pyroclastic-flow deposits. Their eruptions were accompanied by the formation of an EW-oriented graben (70 km × 45 km) under regional NS extensional stress. Pre-Tertiary basement rocks are absent on the surface of the graben but occur at depth, having subsided up to 3 km. Radiometric ages of volcanic rocks on the surface show zoned isochrons from 5 Ma at the margin to 0.3 Ma in the center of the HVZ. The youngest center of age zonation coincides with a 30 mgal negative Bouguer gravity anomaly. Radiometric ages of rocks from drill cores are older toward the bottom of the graben, reaching a maximum of at least 4 Ma. Volcanic activity concentrated over time toward the center of the graben and buried successively erupted material. Areas of active volcanism in the HVZ became smaller and changed in style during the 5-Ma history of activity. Volcanism of the early stage (5-2 Ma) was characterized by voluminous eruptions of andesitic lava flows that formed lava plateaus and were intruded by EW-oriented feeder dikes, perhaps related to fissure eruptions. In contrast, late-stage volcanism (2-0 Ma) resulted primarily in andesitic to dacitic lava domes with features of monogenetic volcanoes produced at low eruption rates. The HVZ shows unimodal volcanism dominated by andesitic and dacitic lavas with a small amount of rhyolite and only traces of basalt; these characteristics differ from those that typify volcanism in most other extensional areas. Erupted material in the HVZ is of the calc-alkali and high-alkali tholeiite series and shows no significant chemical changes over 5 Ma, except for an increase in K2O after 1.6 Ma. The net horizontal displacement along normal faults indicates that the HVZ widened by about 10%–20% across the graben at an average rate of 0.1 cm/yr. I interpret the HVZ to be neither a pull-apart structure of the pre-Tertiary basement nor the result of propagation of the Okinawa Trough, but rather the earliest stage of rifting when vertical subsidence caused by normal faulting is compensated by filling with volcanic material.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Volcanism related to subduction of the Philippine Sea (PHS) plate began in Central Kyushu at 5 Ma, after a pause of igneous activity lasting about 10 m.y. It formed a large volcano-tectonic depression, the Hohi volcanic zone (HVZ), and has continued to the present at a decreasing eruption rate. The products are largely andesite and dacite, which became enriched in K with time. The proportion of tholeiitic to calc alkalic rocks also increases with time. Calc-alkalic high-Mg basaltic andesites (YbBs) were erupted in the early stage of the HVZ activity (5–3 Ma), and high-alumina basalts (KjBs) were erupted in the later stage (2–0 Ma). In contrast to the basalts in the HVZ, Northwest Kyushu basalts (NWKBs) have been erupted on the backarc side of the HVZ since 11 Ma, and hence are not related to the PHS plate subduction. They are mainly high-alkali tholeiitic to alkali basalt that shows no notable chemical change with time. NWKB, YbB, and KjB have MORB-normalized incompatible-element spectra that differ from each other, as is well expressed in both Nb and Sr anomalies. The patterns of KjB and NWKB are typical of those for island-arc basalt (IAB) and ocean-island basalt (OIB), respectively. YbB shows a pattern intermediate between the two. We suggest that the magma source beneath the HVZ changed in composition from an OIB-type mantle to an IAB-type mantle as the subduction of PHS plate advanced. However, the magma source remained fertile under Northwest Kyushu. In order to explain the temporal change of source mantle beneath the HVZ, we propose a model for progressive contamination of the mantle wedge, in which three processes (contamination by a slab-derived component, subtraction of magma from the mantle, and mixing of the mantle residue and slab-derived component) are repeated as subduction continues. As long as the progressive contamination of mantle wedge proceeds, its trace-element composition converges at a steady-state value for a short period. This value does not depend on the initial composition of the mantle wedge but instead on the composition of the slab-derived component. The trace-element composition of the magma produced in such a mantle wedge approaches that of the slab-derived component with time, but the major-element composition is determined by the phase relations of mantle peridotite. The slab-derived component may be basaltic liquid that is partially melted from rutile-bearing eclogite.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 53 (1991), S. 407-419 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The chronology of deposits of the 1976 eruption of Augustine volcano, which produced pyroclastic falls, pyroclastic flows, and lava domes, is determined by correlating the stratigraphy with published records of seismicity, plume observations, and distant ash falls. Three thin air-fall ash beds (unit A1, A2 and A3) correlate with events near the beginning of the 1976 eruption on 22 and 23 January. On 24 January a small-volume, ash-cloud-surge deposit (unit S) accumulated over the north half of Augustine Island. A series of pumiceous pyroclastic flows represented by the lobate pumiceous deposits (unit F) occurred on 24 January and locally melted the snowpack to cause small pumice-laden floods. A thin ash bed (unit A4) was deposited on 24 January, and the main plinian eruption (unit P) occurred on 25 January. In middle to late February and again in mid April, lava domes were extruded at the summit accompanied by incandescent block-and-ash flows down the north flank. A hut near the north coast of the island was mechanically and thermally damaged by the small-volume ash-cloud surge of unit S before the eruption of the pumice flow of unit F; the metal roof was then penetrated by lithic fragments of the plinian fall of 25 January. Explosive eruptions in the early stage of an eruption-like that which deposited unit S — are important hazards at Augustine Island, as are infrequent debris avalanches and attendant tsunamis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-09-01
    Print ISSN: 1367-9120
    Electronic ISSN: 1878-5786
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-04-01
    Print ISSN: 1367-9120
    Electronic ISSN: 1878-5786
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-01
    Print ISSN: 0377-0273
    Electronic ISSN: 1872-6097
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...