ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-03
    Description: Due to the brittle nature of poly(lactic acid) many attempts have been made to flexibilize this polyester for applications such as thin films and foils. However, due to complex phase behavior, many drawbacks for plasticizer and blend components are described. To overcome miscibility, post crystallization and migration issues a principle of click-chemistry was employed to change the molecular characteristics from external to internal plasticization by fixation of a plastisizing unit with help of a stereocomplex crystallization. Hydroxyl terminated polycaprolactone oligomers were used as a macroinitiator for the ring opening polymerization of d-lactide, resulting in blockcopolymers with plasticizing unit polycaprolactone and compatibilizing poly(d-lactic acid)-blocks. The generated block copolymers were blended with a poly(l-lactic acid)-matrix and formed so called stereocomplex crystals. In comparison to unbound polycaprolactone the polycaprolactone blocks show a lower migration tendency regarding a solution test in toluene. Besides that, trapping the plasticizing units via stereocomplex also improves the efficiency of the plasticizer. In comparison to polymer blends with the same amount of non-bonded polycaprolactone oligomers of the same molecular weight, block copolymers with poly(d-lactic acid) and polycaprolactone can shift the glass transition temperature to lower values. This effect can be explained by the modulated crystallization of the polycaprolactone-blocks trapped into the matrix, so that a higher effective amount can interact with the poly(l-lactic acid)-matrix.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-01
    Description: Novel polymeric acrylate-based flame retardants (FR 1–4) containing two phosphorus groups in different chemical environments were synthesized in three steps and characterized via nuclear magnetic resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and mass spectrometry (MS). Polylactic acid (PLA) formulations with the synthesized compounds were investigated to evaluate the efficiency of these flame retardants and their mode of action by using TGA, UL94, and cone calorimetry. In order to compare the results a flame retardant polyester containing only one phosphorus group (ItaP) was also investigated in PLA regarding its flame inhibiting effect. Since the fire behavior depends not only on the mode of action of the flame retardants but also strongly on physical phenomena like melt dripping, the flame retardants were also incorporated into PLA with higher viscosity. In the UL94 vertical burning test setup, 10% of the novel flame retardants (FR 1–4) is sufficient to reach a V-0 rating in both PLA types, while a loading of 15% of ItaP is not enough to reach the same classification. Despite their different structure, TGA and cone calorimetry results confirmed a gas phase mechanism mainly responsible for the highly efficient flame retardancy for all compounds. Finally, cone calorimetry tests of the flame retardant PLA with two heat fluxes showed different flame inhibiting efficiencies for different fire scenarios.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-03-06
    Description: Much effort has been made to enhance the toughness of poly (lactic acid) (PLA) to broaden its possible range of usage in technical applications. In this work, the compatibility of PLA with a partly bio-based ethylene-propylene-diene-rubber (EPDM) through reactive extrusion was investigated. The concentration of EPDM in the PLA matrix was in the range of up to 20%. The reactive extrusion was carried out in a conventional twin-screw extruder. Contact angle measurements were performed to calculate the interfacial tension and thus the compatibility between the phases. The thermal and mechanical properties as well as the phase morphology of the blends were characterized. A copolymer of poly (ethylene-co-methyl acrylate-co-glycidyl methacrylate) (EMAGMA) was used as compatibilizer, which leads to a significant reduction in the particle size of the dispersed rubber phase when compared with the blends without this copolymer. The use of EMAGMA combined with soybean oil (SBO) and a radical initiator enhances the elongation at break of the compound. The results indicate that the reduction of the particle size of the dispersed phase obtained with the compatibilizer alone is not sufficient to improve the mechanical properties of the blend system. The induced radical reactions also influenced the mechanical properties of the blend significantly.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: Polylactide (PLA), poly(butylene succinate) (PBS) and blends thereof have been researched in the last two decades due to their commercial availability and the upcoming requirements for using bio-based chemical building blocks. Blends consisting of PLA and PBS offer specific material properties. However, their thermodynamically favored biphasic composition often restricts their applications. Many approaches have been taken to achieve better compatibility for tailored and improved material properties. This review focuses on the modification of PLA/PBS blends in the timeframe from 2007 to early 2019. Firstly, neat polymers of PLA and PBS are introduced in respect of their origin, their chemical structure, thermal and mechanical properties. Secondly, recent studies for improving blend properties are reviewed mainly under the focus of the toughness modification using methods including simple blending, plasticization, reactive compatibilization, and copolymerization. Thirdly, we follow up by reviewing the effect of PBS addition, stereocomplexation, nucleation, and processing parameters on the crystallization of PLA. Next, the biodegradation and disintegration of PLA/PBS blends are summarized regarding the European and International Standards, influencing factors, and degradation mechanisms. Furthermore, the recycling and application potential of the blends are outlined.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-25
    Description: For some applications of bioplastics like food packaging or medical devices, applying additives can be necessary to avoid microbial activity and hinder biofilm or fouling formation. A currently promising additive is chitosan (CS), the deacetylated form of the biogenic scaffolding material chitin. Due to its hydrophilicity, chitosan is not compatible with most of the thermoplastic bio-based polymers like poly(lactic acid) (PLA) or polyhydroxyalkanoates (PHA). In this work, compatibilization between chitosan and two selected bio-based polyesters, PLA and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), was enhanced by grafting maleic anhydride (MAH) and glycidyl methacrylate (GMA), respectively, onto polymer chains using peroxide. The success of grafting was confirmed via titration methods. The effects of grafting agent and peroxide concentrations on grafting reaction and the physical and thermal properties of the functionalized polyesters were investigated. Compounding of the functionalized polyesters with different weight portions of chitosan was accomplished in a discontinuous internal mixer by in-situ functionalization, followed by blending with chitosan. The titration method, scanning electron microscopy, DSC, FTIR and mechanical characterization of the composites showed good interfacial adhesion and suggest the formation of covalent bonds between functional groups of the polyesters and chitosan, especially for the samples functionalized with GMA. The molecular weights (Mw) of the samples showed a change in the molecular weight related to the thermal degradation of the sample. The Mw of the samples grafted with MAH are lower than those functionalized with GMA. Furthermore, integration of chitosan into non-functionalized PLA polymer matrix showed a nucleating effect, while for PHBV, the increase of crystallinity with the content of chitosan was only observed for grafted PHBV.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-07-02
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-04
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-12-22
    Description: Biodegradable plastics are experiencing increasing demand, in particular because of said property. This also applies to the two biopolyesters poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) covered in this study. Both are proven to be biodegradable under industrial composting conditions. This study presents the influence of mineral fillers on the disintegration process of PLA/PBS blend systems under such conditions. Chalk and talc were used as fillers in PLA/PBS (7:3) blend systems. In addition, unfilled PLA/PBS (7:3/3:7) blend systems were considered. Microscopic images, differential scanning calorimetry and tensile test measurements were used in addition to measuring mass loss of the specimen to characterize the progress of disintegration. The mineral fillers used influence the disintegration behavior of PLA/PBS blends under industrial composting conditions. In general, talc leads to lower and chalk to higher disintegration rates. This effect is in line with the measured decrease in mechanical properties and melting enthalpies. The degrees of disintegration almost linearly correlate with specimen thickness, while different surface textures showed no clear effects. Thus, we conclude that disintegration in a PLA/PBS system proceeds as a bulk erosion process. Using fillers to control the degradation process is generally regarded as possible.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-04-21
    Description: Cellulose acetate (CA), an organic ester, is a biobased polymer which exhibits good mechanical properties (e.g., high Young’s modulus and tensile strength). In recent decades, there has been significant work done to verify the thermal and thermomechanical behaviors of raw and plasticized cellulose acetate. In this study, the thermomechanical properties of plasticized cellulose acetate—especially its ββ-relaxation and activation energy—were investigated. The general thermal behavior was analyzed and compared with theoretical models. The study’s findings could be of special interest, due to the known ββ-relaxation dependency of some polymers regarding mechanical properties—which could also be the case for cellulose acetate. However, this would require further investigation. The concentration of the plasticizers—glycerol triacetate (GTA) and triethyl citrate (TEC)—used in CA ranged from 15 to 40 wt%. DMTA measurements at varying frequencies were performed, and the activation energies of each relaxation were assessed. Increasing plasticizer content first led to a shift in ββ-relaxation temperature to highervalues, then reached a maximum before declining again at higher concentrations. Furthermore, the activation energy of the ββ-relaxation constantly rose with increases in plasticizer content. The trend in the ββ-relaxation temperature of the plasticized CA could be interpreted as a change in the predominant phase of the overlapping ββ-relaxation of the CA itself and the αα′-relaxation of the plasticizer—which appears in the same temperature range. The plasticizer used (GTA) demonstrated a higher plasticization efficiency than TEC. The efficiencies of both plasticizers declined with increasing plasticizer content. Additionally, both plasticizers hit the saturation point (in CA) at the lowest studied concentration (15 wt%).
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-01-09
    Print ISSN: 0021-9568
    Electronic ISSN: 1520-5134
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...