ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    ISSN: 1573-0867
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The temporal dynamics of N in above- and below-ground parts of winter wheat and the dynamics of soil mineral-N were measured in the field in four treatments in wheat and a grass ley (L). The wheat treatments were: control (C), drought (D), daily irrigation (I), and daily irrigation and fertilization (IF). Nitrogen (20 g m−2) was supplied as single doses in spring in C, D, and I, and according to a logistic N uptake function in IF. L, which was under establishment, was irrigated and fertilized in the same way as IF, but the total amount applied was only 5.6 g N m−2. A soil nitrogen simulation model, SOILN, was used to combine crop and soil N data with measured litter decomposition rates and other major parts of the nitrogen cycle to calculate annual N budgets, based on daily model calculations. The dynamic patterns of crop N uptake and soil mineral N were similar in C, D, and I, although different in magnitude, but different in IF. Plant N uptake in C, D, and I was almost nil after anthesis, whereas it continued in IF until harvest. Generally, simulated soil mineral N levels (0–90 cm) agreed reasonably well with measurements on a yearly time scale, whereas their short-term dynamics were less well described by the simulations. We tested the hypothesis that the short-term variations were due to processes not included in the model,i.e., the loss of recently taken up plant N via roots during the growing season, and microbial N immobilization and remineralization processes induced by root-derived carbon. A simulated input to the soil of 150 g C m−2 in IF, mimicking root-derived C, resulted in an improved agreement between simulated and measured short-term mineral N dynamics. Because of irrigation, net N mineralization of soil organic material in I and IF was about twice that in C and D, while that in L was about three times higher due to irrigation and high soil temperatures. Simulated N leaching during the following winter was highest in L, followed by I, IF, C and D. Measurements and simulations of N amounts in the system indicated that daily fertilization decreased N leaching compared with single-dose fertilization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Decomposition ; Soil moisture ; Nitrogen immobilization ; Fertilization ; Simulation modelling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Winter wheat grown on a clay soil was subjected to one of four treatments. The control was not irrigated; the drought treatment had screens to divert rainwater; the irrigation and irrigation/fertilization treatments were irrigated using a drip-tube system with liquid fertilizer (200 kg N ha-1 year-1) applied daily in the irrigation/fertilization treatment according to predicted plant uptake. All other treatments also received 200 kg N, but as a single application of bag fertilizer. Soil temperature was monitored. Soil moisture was measured using gravimetric samplings and a capacitance method. Litter bags with barley straw were buried at 10 cm depth in the spring and sampled repeatedly during the growing season. Decomposition rates were calculated assuming exponential decay and that water-soluble components were immediately decomposed or leached from the litter bags. Rates were highly dependent on soil moisture, and the constants ranged from 0.11% day-1 in the drought treatment to 0.55% day-1 in the irrigation/fertilization treatment. A simulation model with driving variables based on Q 10 temperature dependence and a log/linear relationship between soil water tension and activity was fitted to the data. The control and drought treatments showed high climate-corrected decomposition constants. The high values were attributed to low and erratic mass loss due to drought, and to low precision in the conversions from water content to tension in the dry range. The irrigated treatments showed good fits, and there was little or no difference in decomposition rates between the two irrigated treatments. The N dynamics of the straw differed considerably between treatments, and the ranking of plots in terms of net immobilization in the straw was control〉irrigation/fertilization〉irrigation〉drought.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil water and temperature dynamics were measured in a field experiment with winter wheat on a clay soil. There were four treatments: Control (C), receiving natural precipitation, drought (D), protected from rain by plastic screens during the growing season, daily irrigation (I) and daily irrigation and fertilization (IF). Treatments C, D and I received the nitrogen fertilizer as a single application of solid fertilizer in spring. In IF daily dressings of nutrients were supplied in the irrigation water. All treatments received 20 g Nm−2. An associated experiment with a newly sown grass ley (L) that was irrigated and fertilized daily (total 5.6 g Nm −2) was also performed. Standard meteorological variables (air temperature and humidity, wind speed, precipitation, global radiation, and relative cloudiness) and crop development data (green area index, crop height, relative root distribution in depth) above and below ground were used as driving variables within a physically based dynamic model (SOIL) for simulating water and heat fluxes. Measured soil temperature and water content from one treatment (I) were used to tune the model parameters, tentatively set from literature data. Thereafter, water and heat fluxes in the other treatments were simulated using the same parameter values but with different crop-related measurements as driving variables for each treatment. Measured soil temperature and water content in C, D, IF and L could thus be used for validation of the simulations. The theory formulated in the model could accurately explain measured treatment differences in soil water and temperature dynamics. Since the soil-related parameters were identical in all treatments, the model was shown to be applicable over a wide range of moisture conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: Elevated CO2 ; minirhizotrons ; open-top chambers ; roots ; soil moisture ; water-use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Plant responses to increasing atmospheric CO2 concentrations have been studied intensively. However, the effects of elevated CO2 on root dynamics, which is important for global carbon budgets as well as for nutrient cycling in ecosystems, has received much less attention. We used minirhizotrons inside open-top chambers to study the effects of elevated atmospheric carbon dioxide concentration on root dynamics in a nutrient-poor semi-natural grassland in central Sweden. We conducted our investigation over three consecutive growing seasons during which three treatments were applied at the site: Elevated (≈ 700 μmol mol-1) and ambient (≈ 360 μmol mol-1) chamber levels of CO2 and a control, without a chamber. During 1997, a summer with two dry periods, the elevated treatment compared with ambient had 25% greater mean root counts, 65% greater above-ground biomass and 15% greater soil moisture. The chambers seemed responsible for changes in root dynamics, whereas the elevated CO2 treatment in general increased the absolute sum of root counts compared with the ambient chamber. In 1998, a wet growing season, there were no significant differences in shoot biomass or root dynamics and both chamber treatments had lower soil moisture than the control. We found that as seasonal dryness increased, the ratio of elevated – ambient shoot biomass production increased while the root to shoot ratio decreased. We conclude that this grasslands response to elevated CO2 is dependent on seasonal weather conditions and that CO2 enrichment will most significantly increase production in such a grassland when under water stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5036
    Keywords: depth distribution ; irrigation ; nitrogen fertilization ; root biomass ; soil-coring ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Root biomass, root nitrogen content, and root distribution down to 50 cm depth in winter wheat were determined by soil coring on five dates in four different treatments: control (C), drought (D), daily irrigation (I), and daily irrigation and fertilization (IF). The first three treatments received the N fertilizer application as a single dose in spring, whereas in IF daily doses of N were supplied in the irrigation water using a drip-tube system, according to the estimated nutrient demand of the crop. All treatments received 20 g N m−2 year−1. The maximum root biomass (104 g m−2) was reached earliest in IF. On 6 June, root samples were taken down to a depth of 100 cm, and the proportion of deep roots (50–100 cm) was least in I, indicating that it had the shaklowest root system. The root biomass as a fraction of the total plant mass decreased during crop development in all treatments down to about 4% at harvest. The decrease was more rapid in I and C than in D and IF. The higher proportion of roots during spring in D and IF coincided with a low nitrogen concentration in the roots, which was attributed to the restricted water supply and to the relative shortage of nitrogen during early crop development in D and IF, respectively. The dynamics of mass and nitrogen in macroscopic organic debris in the soil suggested that root turnover rates were high. ei]{gnB E}{fnClothier}
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: cereals ; clay soil ; grass ley ; roots ; simulation modelling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Major carbon and nitrogen fluxes through crop and soil were studied in a series of field experiments. Barley, winter wheat, a grass mixture cut for hay and the energy crop reed canary-grass (Phalaris arundinacea) were studied. The treatments ranged from drought to daily irrigation/fertilization with high doses of water and nitrogen. Crop biomass and nitrogen dynamics above and below ground and incident light as well as soil temperature, moisture and mineral N content were monitored. Litter decomposition experiments were also performed in the field. The results were used to parameterize, validate and improve a set of soil/plant simulation models. Selected experimental results and experiences gained from the water, C and N budgeting and modelling work are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-0867
    Keywords: carbon balance ; daily irrigation and fertilisation ; minirhizotrons ; nitrogen ; Phalaris arundinacea ; roots
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Biomass and nitrogen in the roots, rhizomes, stem bases and litter of reed canarygrass (Phalaris arundinacea L.) were repeatedly estimated by soil coring, and root growth dynamics of this potential energy crop was studied for two years using minirhizotrons. Results are discussed in relation to above-ground biomass and nitrogen fertilisation. Five treatments were used: C0, unfertilised control; C1, fertilised with solid N fertiliser in spring; I1, irrigated daily, fertilised as in C1; IF1 , irrigated as I1 and fertilised daily through a drip-tube system; IF2, as in IF1 but with higher N fertiliser rates. Biomass of below-ground plant parts of reed canarygrass increased between the first and second years. Up to 50% of total plant biomass and nitrogen were recovered below-ground. The highest proportions were found in C0. The calculated annual input via root turnover ranged between 80 and 235 g m-2. In absolute terms, up to 1 kg and 10 g m-2 of biomass and nitrogen, respectively, were found in below-ground plant fractions. High inputs of stubble and accumulated below-ground biomass will occur when the ley is ploughed, which will result in a highly positive soil carbon balance for this crop in comparison with that of conventional crops such as cereals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-07-01
    Print ISSN: 0002-1962
    Electronic ISSN: 1435-0645
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-06-30
    Print ISSN: 0361-5995
    Electronic ISSN: 1435-0661
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-02-21
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...