ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The lateral leaflets of Desmodium motorium (Houtt.) Merr. exhibit ultradian up- and down movements, which are paralleled by oscillations of the membrane potential of motor cells in the pulvinus. By different treatments we have tested the hypothesis that both that both oscillation-types are causally related. The reactions of the leaflet movement and the membrane potential were evaluated by the following approaches. (1) Application of vanadate. an inhibitor of the proton pump in the plasmalemma. and N2 suppressed leaflet movements and finally arrested the leaflet in the lower position. Before the oscillations damped out, a strong lengthening in period was found. This indicates that the pump is part of the ultradian clock. A period lenthening and a final suppression of the rhythm by vanadate was also seen in the extracellular electric potential of the pulvinus. Intracellular recordings in situ showed that vanadate application depolarized the motor cells. (2) Light of high fluence rates diminished the amplitude of the oscillations of the membrane potential of single motor cells and shortened the period. The same effects were observed when monitoring the lateral leaflet movement. The leaflet always moved towards the direction of the light. whether it was applied from the abaxial or from the adaxial part of the pulvinus. (3) When light was applied to the pulvinus of lateral leaflets. which had spontancously stopped moving in an upper position. oscillations were induced transiently. This effect was also found for the membrane potential of motor cells in the pulvinus. - Our results thus provide further evidence that the membrane potential controls the volume state of the motor cells in the pulvinus of lateral leaflets of Desmodium motorium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 84 (1992), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A transducer was developed to record the circadian movement of the individual leaflets in Oxalis regnellii Mig. The method can easily be adapted to measure other kinds of plant movements as well. It is based on the detection of the shadow each leaflet casts on the small side of a specially formed Perspex plate. The light is guided through the Perspex and collected by a phototransistor, which provides an electrical signal that is proportional to the light intensity falling onto it. The output signal can be made a linear function of the leaf angle. This equipment was used in experiments to study the coupling between the 3 leaflets in Oxalis. Pulses of 4 h of red light were given to one of the leaflets, the two others were shielded from the light. A phase response curve was determined for each leaflet, but there was no significant difference in the phase response between the 3 leaflets. Experiments were also made in which the 3 leaflets were separated physically by cuts along the petiole between the pulvini. In this case ultradian oscillations were observed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 90 (1994), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In a spaceflight experiment, autotropism by oat (Avena sativa L.) coleoptiles following gravitropic responses was prominent in weightlessness: counter-reactions led to the straightening of the curved coleoptiles. This was not the case during clinorotation on earth. The autotropic reactions appeared to be related to the stimulus received during the stimulus period, i.e. the greater the response the greater the autotropic counter-reaction. Previous models of the gravitropic system which predicted that coleoptiles would not straighten in weightlessness are disproved. A modification to one of the models is proposed which includes the autotropic response observed in spaceflight. The nature of the counter-reactions in the absence of gravitropic stimulation is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 89 (1993), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Oxalis regnellii Mig. is a trifoliate plant, and the three leaflets usually show synchronized up and down movements with a circadian period of 26–27 h. The three leaflets can also perform desynchronized ultradian oscillations, and we report on such rhythms under different conditions. A study of the occurrence of ultradian leaf movement rhythms as a function of irradiance is presented. At an irradiance of approximately 1 μW cm−2, the occurrence was maximal and ca 30%. The periods varied from 5 to 15 h. Four other cases of ultradian rhythms in different conditions are also presented. In one case spontaneous ultradian rhythms occurred, and in another, two of the leaflets showed ultradian rhythms when the third leaflet had received a light pulse. In two more cases, the three leaflets on a leaf were separated by physical cuts along the petiole between the pulvini; in both cases the period was approximately 5 h. Possible mechanisms to explain the ultradian rhythms in Oxalis regnelli are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Gravitropic responses of dark grown oat coleoptiles were measured in weightlessness and under clinorotation on earth. The tests in microgravity were conducted in Spacelab during the IML-1 mission and those on clinostats were conducted in laboratories on earth. The same apparatus was used for both kinds of tests. In both cases autotropism and gravitropic responsiveness were determined. This allowed a quantitative comparison between the plants' responses after receiving the same tropistic stimulations either in weightlessness or on clinostats.Autotropism was observed with oat coleoptiles responding in weightlessness but it did not occur on clinostats. Gravitropic responsiveness was measured as the ratio between the incremental bending response (degrees curvature) and the corresponding incremental g-dose (stimulus intensity times duration for which it was applied). Plants were tested at either of two stages of coleoptile development (i.e. different coleoptile lengths). From a total of six different kinds of critical comparisons that could be made from our tests that provided data for clinorotated vs weightless plants, three showed no significant difference between responses in simulated vs authentic weightlessness. Three other comparisons showed highly significant differences. Therefore, the validity of clinorotation as a general substitute for space flight was not supported by these results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 95 (1995), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We conducted a series of gravitropic experiments on Avena coleoptiles in the weightlessness environment of Spacelab. The purpose was to test the threshold stimulus, reciprocity rule and autotropic reactions to a range of g-force stimulations of different intensities and durations The tests avoided the potentially complicating effects of earth's gravity and the interference from clinostat ambiguities. Using slow-speed centrifuges, coleoptiles received transversal accelerations in the hypogravity range between 0.1 and 1.0 g over periods that ranged from 2 to 130 min. All responses that occurred in weightlessness were compared to clinostal experiments on earth using the same apparatus.Characteristic gravitropistic response patterns of Avena were not substantially different from those observed in ground-based experiments. Gravitropic presentation times were extrapolated. The threshold at 1.0 g was less than 1 min (shortest stimulation time 2 min), in agreement with values obtained on the ground. The least stimulus tested, 0.1 g for 130 min, produced a significant response. Therefore the absolute threshold for a gravitropic response is less than 0.1 g.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Experiments were undertaken to determine if the reciprocity rule is valid for gravitropic responses of oat coleoptiles in the acceleration region below 1 g. The rule predicts that the gravitropic response should be proportional to the product of the applied acceleration and the stimulation time.Seedlings were cultivated on 1 g centrifuges and transferred to test centrifuges to apply a transverse g-stimulation. Since responses occurred in microgravity, the uncertainties about the validity of clinostat simulation of weightlessness was avoided Plants at two stages of coleoptile development were tested. Plant responses were obtained using time-lapse video recordings that were analyzed after the flight. Stimulus intensities and durations were varied and ranged from 0.1 to 1.0 g and from 2 to 130 min, respectively. For threshold g-doses the reciprocity rule was obeyed. The threshold dose was of the order of 55 g s and 120 g s, respectively, for two groups of plants investigated. Reciprocity was studied also at bending responses which are from just above the detectable level to about 10 degrees. The validity of the rule could not be confirmed for higher g-doses, chiefly because the data were more variable.It was investigated whether the uniformity of the overall response data increased when the gravitropic dose was defined as (gm× 1), with m-values different from unity. This was not the case and the reciprocity concept is, therefore, valid also in the hypogravity region. The concept of gravitropic dose, the product of the transverse acceleration and the stimulation time, is also well-defined in the acceleration region studied. With the same hardware, tests were done on earth where responses occurred on clinostats. The results did not contradict the reciprocity rule but scatter in the data was large.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 98 (1996), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The precise description of the gravitropic curvature response of plants is often difficult due to the presence of gravity when the response is recorded. Therefore, unambiguous results on the gravitropic reactions in differents segments of coleoptiles, the participation of auxin transport in the curvature development and the reactions to hypogravity stimulations can only be achieved in weightlessness. To answer these questions, curvatures of Avena coleoptiles at different distances from the apex were studied after transverse, hypogravity stimulations. The experiments were conducted in Spacelab on the Shuttle in earth orbit.Test plants were cultivated on 1.0 g-centrifuges in Spacelab. The stimulation accelerations, were between 0.1 and 1.0 g, and duration varied between 2 and 130 min. All plant responses were recorded in weightlessness by a video cassette recorder for analysis.The gravitropic curvature started almost simultaneously in apical segments, and occurred later in the basal ones. After maximum response, the curvature in the top segments showed a clear autotropic reaction, that was not seen in the basal segments. Initial wrong-way curvatures were recorded in the basal part of the coleoptiles at several g-levels.The further down along the coleoptile, the later the occurrence of the maximum gravitropic curvature of each segment. For example, after a stimulus of 25 g min the maxima appeared to travel down the coleoptile with a speed of about 50 mm h−1 in the upper and 20 mm h−1 in the lower part of the coleoptiles. It is concluded that the basipetal auxin transport can contribute only marginally to the gravitropic curvature pattern due to its much lower transport rate. Local reactions control the curvature pattern in each segment (even if the basipetal auxin transport must add to the reactions).Extrapolations from stimulus response data curves allowed some determinations of threshold stimulation times for different segments along the coleoptiles. Data for the individual segments along the coleoptiles were not at variance with the reciprocity law.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 96 (1996), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The dynamics of root growth was studied in weightlessness. In the absence of the gravitropic reference direction during weightlessness, root movements could be controlled by spontaneous growth processes, without any corrective growth induced by the gravitropic system. If truly random of nature, the bending behavior should follow socalled ‘random walk’ mathematics during weightlessness. Predictions from this hypothesis were critically tested.In a Spacelab ESA-experiment, denoted RANDOM and carried out during the IML-2 Shuttle flight in July 1994, the growth of garden cress (Lepidium sativum) roots was followed by time lapse photography at 1-h intervals.The growth pattern was recorded for about 20 h. Root growth was significantly smaller in weightlessness as compared to gravity (control) conditions.It was found that the roots performed spontaneous movements in weightlessness. The average direction of deviation of the plants consistently stayed equal to zero, despite these spontaneous movements. The average squared deviation increased linearly with time as predicted theoretically (but only for 8–10 h).Autocorrelation calculations showed that bendings of the roots, as determined from the 1-h photographs, were uncorrelated after about a 2-h interval.It is concluded that random processes play an important role in root growth. Predictions from a random walk hypothesis as to the growth dynamics could explain parts of the growth patterns recorded. This test of the hypothesis required microgravity conditions as provided for in a space experiment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 70 (1987), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Circumnutations of hypocotyls of sunflower (Helianthus annuus L. cv. Californicus) were studied under 1 g and 3 g conditions. Root mean square values of the hypocotyl deviation from the plumbline and period of the movements were determined from Calculations of the autocorrelation functions of the movements. The amplitude and the period of the circumnutations increased under 3 g as compared to 1 g. A transition from 3 to 1 g or vice versa also caused changes in period and amplitude of the movoments. The results are interpreted as a support for the idea that gravity influences the circumnutation parameters in this sunflower variety. A comparison is made with published results on the dwarf sunflower ev. Teddy Bear where the force influence is very small or negligible. Simulations of a model for circumnutations show movements which are in qualitative agreement with the experimental results, provided adaptation to g-levels is included in the model. Finally, the results are discussed with the recent Spacelab-experiment (SLI) as a background.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...