ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 74 (1985), S. 505-518 
    ISSN: 1437-3262
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Zusammenfassung Zwei mesozoische Abschnitte rechtfertigen die Verwendung des Begriffes »Anoxic Event«: die frühefalciferum-Zone oderexaratum-Zone des Toarcian und dieWhiteinella archaeocretacea Interval-Zone, die die Grenze Cenoman-Turon überquert. In beiden Zeitabschnitten bildeten sich regional Sedimente mit anomalem Reichtum an organischer Substanz (Schwarzschiefer), die von einem positiven über 2‰ PDB hinausgehenden Ausschlag bei den Kohlenstoffisotopen in gleichalten biogenen Karbonaten begleitet werden. Die Dauer der beiden Ereignisse betrug wahrscheinlich weniger als eine halbe Million Jahre und beiden ging eine Phase regionaler Erosion und möglicherweise des »Aufquellenden Tiefenwassers« voraus. Gleichzeitiger Anstieg des Meerespiegels mit Transgression ist wahrscheinlich. Die europäische Sicht dieser Ereignisse bedeutet einige signifikante Unterschiede. Diefalciferum-Zone besitzt auf dem palaeo-europäischen Shelf generell eine höhere Konzentration des organischen Materials und der Kohlenwasserstoffe als auf den Kontinentalrändern der Tethys. Das Gegenteil ist der Fall in den Schwarzschiefern, die sich während derWhiteinella archaeocretacea Interval-Zone gebildet haben. Außerdem ist die Zusammensetzung der Kohlenstoffisotopen des organischen Materials derfalciferum-Zone sowohl von Nordeuropa als auch von der Tethys unnormal negativ verglichen mit derWhiteinella archaeocretacea Interval-Zone. Die Beteiligung unterschiedlicher planktonischer Organismen und möglicherweise abweichende ökologische Bedingungen können für die Faziesverteilung während dieser zwei Ereignisse verantwortlich gemacht werden.
    Abstract: Résumé Deux intervalles de l'ère mésozoĩque sont assez brefs pour être qualifiés d'événements anoxiques: la Zoneà falciferum (souszone àexaratum) du Toarcien et la Zone àWhiteinella archaeocretacea à la limite Cénomanien-Turonien. Chacun de ces deux intervalles correspond à un dépôt régional de couches anormalement riches en matières organiques (black shales), accompagné, dans des carbonates biogénétiques de même âge, d'une anomalie positive de plus de 2‰ PDB des isotopes du carbone. Les deux événements ont probablement été précédés par une phase d'érosion ou de condensation sédimentaire et de remontée d'eaux profondes («upwelling»). Leur durée, qui correspondait probablement à une période d'élévation du niveau des mers et de transgression, a été inférieure à 500.000 ans. A l'échelle européenne, les deux événements anoxiques se distinguent: la matière organique de la Zone àfalciferum est plus concentrée et plus riche en hydrogène sur la plateforme mésozoĩque nord-européenne que sur la marge téthysienne, tandis que la Zone àWhiteinella archaecocretacea montre une dispostion inverse. De plus, la composition isotopique du C dans la matière organique de la Zone àfalciferum est plus négative que celle de la Zone àWhiteinella archaeocretacea tant dans les régions nord-européennes que téthysienne. Il est possible qu'il s'agisse d'espèces différentes d'organismes planctoniques, leurs milieux écologiques différents pouvant expliquer la nature et la distribution des faciès typiques déposés pendant les deux épisodes.
    Notes: Abstract Two intervals of Mesozoic time are demonstrably of sufficient geological brevity to qualify readily for the term ‘Anoxic Event’: the earlyfalciferum Zone orexaratum Subzone of the Toarcian and theWhiteinella archaeocretacea Interval Zone that straddles the Cenomanian-Turonian boundary. Both periods of time saw regional deposition of anomalously organic-rich strata (black shales) accompanied by a positive 2‰ PDB carbon-isotope excursion in coeval biogenic carbonates, and significant faunal change. The duration of both events was probably less than half a million years, and both were preceded by regional erosion and possible upwelling. Coincident sea-level rise and transgression is likely. A »European view« of these events, however, spotlights some significant differences. Whereas thefalciferum-Zone organic matter is generally more concentrated and more hydrogen-rich on the palaeo-European shelf than on the Tethyan continental margins, the reverse holds true for the black shales formed during theWhiteinella archaeocretacea Interval Zone. Furthermore, the carbon-isotope composition offalciferum-Zone organic matter from both north European and Tethyan sites is anomalously negative compared to that developed in theWhiteinella archaeocretacea Interval Zone. Differing planktonic organisms may have been involved and their possible diverse ecological requirements may go some way to explaining the nature and distribution of facies deposited during these two events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 216 (1967), S. 673-674 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The shape of the fossil nodules varies from place to place and from bed to bed. Some occur as small, roughly spherical, crenulate bodies, showing well developed concentric structure, others are larger, mamillated, potato shaped masses, or the nodules may fuse into an irregular pavement. The nodules ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2016-08-23
    Description: Large igneous provinces (LIPs) are proposed to have caused a number of episodes of abrupt environmental change by increasing atmospheric CO 2 levels, which were subsequently alleviated by drawdown of CO 2 via enhanced continental weathering and burial of organic matter. Here the sedimentary records of two such episodes of environmental change, the Toarcian oceanic anoxic event (T-OAE) and preceding Pliensbachian–Toarcian (Pl-To) event (both possibly linked to the Karoo-Ferrar LIP), are investigated using a new suite of geochemical proxies that have not been previously compared. Stratigraphic variations in osmium isotope ( 187 Os/ 188 Os) records are compared with those of mercury (Hg) and carbon isotopes ( 13 C) in samples from the Mochras core, Llanbedr Farm, Cardigan Bay Basin, Wales. These sedimentary rocks are confirmed as recording an open-marine setting by analysis of molybdenum/uranium enrichment trends, indicating that the Os isotope record in these samples reflects the isotopic composition of the global ocean. The Os isotope data include the first results across the Pl-To boundary, when seawater 187 Os/ 188 Os increased from ~0.40 to ~0.53, in addition to new data that show elevated 187 Os/ 188 Os (from ~0.42 to ~0.68) during the T-OAE. Both increases in 187 Os/ 188 Os correlate with negative carbon isotope excursions and increased mercury concentrations, supporting an interplay between terrestrial volcanism, weathering, and climate that was instrumental in driving these distinct episodes of global environmental change. These observations also indicate that the environmental impact of the Karoo-Ferrar LIP was not limited solely to the T-OAE.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-22
    Description: Although ocean circulation plays a vital role in the climate system, its response to major carbon-cycle perturbations during the mid-Cretaceous, including mid-Cenomanian event I (MCE I) and the Cenomanian-Turonian oceanic anoxic event (OAE 2), is poorly constrained. Here we present Nd isotope evidence for episodic increases in the influence of boreal seawater in the European epicontinental sea during MCE I. The start of this circulation reorganization lagged the onset of the 13 C positive excursion defining MCE I. This sequence of change is similar to that observed during OAE 2 in the same area, showing a consistent response of regional circulation to changes in the global carbon cycle. Brief intervals of invasion of boreal fauna to mid-latitude seas, two during MCE I and one during OAE 2 (Plenus cold event), all started after the influence of boreal seawater was enhanced, implying a slower biological response to climate cooling rather than passive transport of fauna by boreal waters. The lack of an Nd isotope positive excursion in our record across MCE I supports a volcanic origin for prominent increases in seawater Nd isotope values found in the European epicontinental sea and the tropical Atlantic during OAE 2. The observed tight circulation–carbon cycle coupling may help the upper ocean replenish nutrients from deep waters and/or volcanic sources, providing a critical feedback allowing continuation of MCE I and OAE 2 over long durations.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-09-01
    Description: A new geochemical budget for the modern marine carbonate sink helps to explain the major features of the Phanerozoic Ca isotope record. A large compilation of Ca isotope ratios for modern carbonates, incorporating more than 50 new measurements, represents the quantitatively important components of the system. With this data set, distinct Ca isotope ratios are identified for different types of marine carbonate, the balance of which has changed over time with shifts between calcite and aragonite seas and with the development of pelagic calcification during the Mesozoic. It is suggested that large-scale changes in the Ca isotope ratio of seawater, as exemplified by that in the Carboniferous, were no longer possible after Jurassic time because of the generation of a deep-sea calcite sink expressed by deposition of foraminiferal–coccolith ooze across the world ocean. This work demonstrates the close connection between isotopic cycling, carbonate sedimentation, seawater chemistry, and evolutionary trends.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-07-01
    Description: The Early Toarcian (Early Jurassic, c. 183 Ma) was characterized by an Oceanic Anoxic Event (T-OAE), primarily identified by the presence of globally distributed approximately coeval black organic-rich shales. This event corresponded with relatively high marine temperatures, mass extinction, and both positive and negative carbon-isotope excursions. Because most studies of the T-OAE have taken place in northern European and Tethyan palaeogeographic domains, there is considerable controversy as to the regional or global character of this event. Here, we present the first high-resolution integrated chemostratigraphic (carbonate, organic carbon, d13Ccarb, d13Corg) and biostratigraphic (calcareous nannofossil) records from the Kastelli Pelites cropping out in the Pindos Zone, western Greece. During the Mesozoic, the Pindos Zone was a deep-sea ocean-margin basin, which formed in mid-Triassic times along the northeast passive margin of Apulia. In two sections through the Kastelli Pelites, the chemostratigraphic and biostratigraphic (nannofossil) signatures of the most organic-rich facies are identified as correlative with the Lower Toarcian, tenuicostatum/polymorphum–falciferum/serpentinum/levisoni ammonite zones, indicating that these sediments record the T-OAE. Both sections also display the characteristic negative carbon-isotope excursion in organic matter and carbonate. This occurrence reinforces the global significance of the Early Toarcian Oceanic Anoxic Event.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-15
    Description: Lower Cretaceous pedogenic carbonates exposed in SE China have been dated by U–Pb isotope measurements on single zircons taken from intercalated volcanic rocks, and the ages integrated with existing stratigraphy. 13 C values of calcretes range from –7.0 to –3.0 and can be grouped into five episodes of increasing–decreasing values. The carbon isotope proxy derived from these palaeosol carbonates suggests p CO 2 mostly in the range 1000–2000 parts per million by volume (ppmV) at S ( z ) (CO 2 contributed by soil respiration) = 2500 ppmV and 25°C during the Hauterivian–Albian interval ( c . 30 Ma duration). Such atmospheric CO 2 levels are 4–8 times pre-industrial values, almost double those estimated by geochemical modelling and much higher than those established from stomatal indices in fossil plants. Rapid rises in p CO 2 are identified for early Hauterivian, middle Barremian, late Aptian, early Albian and middle Albian time, and rapid falls for intervening periods. These episodic cyclic changes in p CO 2 are not attributed to local tectonism and volcanism but rather to global changes. The relationship between reconstructed p CO 2 and the development of large igneous provinces (LIPs) remains unclear, although large-scale extrusion of basalt may well be responsible for relatively high atmospheric levels of this greenhouse gas. Suggested levels of relatively low p CO 2 correspond in timing to intervals of regional to global enrichment of marine carbon in sediments and negative carbon isotope ( 13 C) excursions characteristic of the oceanic anoxic events OAE1a (Selli Event), Kilian and Paquier events (constituting part of the OAE 1b cluster) and OAE1d. Short-term episodes of high p CO 2 coincide with negligible carbon isotope excursions associated with the Faraoni Event and the Jacob Event. Given that episodes of regional organic carbon burial would draw down CO 2 and negative 13 C excursions indicate the addition of isotopically light carbon to the ocean–atmosphere system, controls on the carbon cycle in controlling p CO 2 during Early Cretaceous time were clearly complex and made more so by atmospheric composition also being affected by changes in silicate weathering intensity.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-11-21
    Description: Geochemical ( 13 C, 18 O and Mn) compositions of Lower Jurassic shallow-water carbonates cropping out in Croatia were analyzed to elucidate the impact of the early Toarcian oceanic anoxic event (T-OAE) on the Adriatic Carbonate Platform (AdCP). The bulk-rock carbon-isotope records through the studied sections (Velebit-A, Velebit-B and Gornje Jelenje) are characterized by two significant excursions: (i) an initial positive trend interrupted by a pronounced negative shift ( c . 2.5) that is followed by (ii) an increasing trend of positive values (up to 4.5). A comparison with 13 C trends obtained from well-calibrated sections from other localities in Europe shows that the overall character of the early Toarcian negative excursion is clearly reproduced in the curves derived from Croatian shallow-water deposits, which helps to date the sequences and reinforces the global character of the carbon-cycle perturbation. Lower Jurassic sedimentary successions in the studied area show a gradual deepening trend corresponding to deposition of the Toarcian spotted limestones. Assuming that the distinctive negative excursion in the carbon-isotope curves is synchronous across the AdCP, the contact between the spotted limestones and the underlying beds rich in lithiotid bivalves appears to be diachronous within the study area. The Mn record through the Croatian Velebit-A section and, in particular, the rise in concentration (up to 100 ppm) coinciding with the beginning of the 13 C carb positive shift, reflects a change in the redox conditions in seawater that allowed diagenetic incorporation of reduced manganese into the calcite structure of the carbonate sediment during the onset of the T-OAE.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-07-13
    Description: Rising oceanic and atmospheric oxygen levels through time have been crucial to enhanced habitability of surface Earth environments. Few redox proxies can track secular variations in dissolved oxygen concentrations around threshold levels for metazoan survival in the upper ocean. We present an extensive compilation of iodine-to-calcium ratios (I/Ca) in marine carbonates. Our record supports a major rise in the partial pressure of oxygen in the atmosphere at ~400 million years (Ma) ago and reveals a step change in the oxygenation of the upper ocean to relatively sustainable near-modern conditions at ~200 Ma ago. An Earth system model demonstrates that a shift in organic matter remineralization to greater depths, which may have been due to increasing size and biomineralization of eukaryotic plankton, likely drove the I/Ca signals at ~200 Ma ago.
    Keywords: Geochemistry, Geophysics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...