ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-07-21
    Description: The promoters of cell adhesion are ligands, which are often attached to flexible tethers that bind to surface receptors on adjacent cells. Using a combination of Monte Carlo simulations, diffusion reaction theory, and direct experiments (surface force measurements) of the biotin-streptavidin system, we have quantified polymer chain dynamics and the kinetics and spatial range of tethered ligand-receptor binding. The results show that the efficiency of strong binding does not depend solely on the molecular architecture or binding energy of the receptor-ligand pair, nor on the equilibrium configuration of the polymer tether, but rather on its "rare" extended conformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jeppesen, C -- Wong, J Y -- Kuhl, T L -- Israelachvili, J N -- Mullah, N -- Zalipsky, S -- Marques, C M -- GM-17876/GM/NIGMS NIH HHS/ -- GM-47334/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jul 20;293(5529):465-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Materials Research Laboratory, Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11463908" target="_blank"〉PubMed〈/a〉
    Keywords: Biotin/*chemistry/metabolism ; Chemistry, Physical ; Diffusion ; Kinetics ; Ligands ; Mathematics ; Monte Carlo Method ; Physicochemical Phenomena ; Polyethylene Glycols ; Polymers/*chemistry ; Protein Conformation ; Streptavidin/*chemistry/metabolism ; Surface Properties ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-07-20
    Description: The adhesion and friction of smooth polymer surfaces were studied below the glass transition temperature by use of a surface forces apparatus. The friction force of a crosslinked polymer was orders of magnitude less than that of an uncrosslinked polymer. In contrast, after chain scission of the outermost layers, the adhesion hysteresis and friction forces increase substantially. These results show that polymer-polymer adhesion hysteresis and friction depend on the dynamic rearrangement of the outermost polymer segments at shearing interfaces, and that both increase as a transition is made from crosslinked surfaces to surfaces with long chains to surfaces with quasi-free ends. The results suggest new ways for manipulating the adhesion and friction of polymer surfaces by adjusting the state of the surface chains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maeda, Nobuo -- Chen, Nianhuan -- Tirrell, Matthew -- Israelachvili, Jacob N -- New York, N.Y. -- Science. 2002 Jul 19;297(5580):379-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, College of Engineering, University of California, Santa Barbara, CA 93106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12130780" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-02-07
    Description: Many biological recognition interactions involve ligands and receptors that are tethered rather than rigidly bound on a cell surface. A surface forces apparatus was used to directly measure the force-distance interaction between a polymer-tethered ligand and its receptor. At separations near the fully extended tether length, the ligands rapidly lock onto their binding sites, pulling the ligand and receptor together. The measured interaction potential and its dynamics can be modeled with standard theories of polymer and colloidal interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, J Y -- Kuhl, T L -- Israelachvili, J N -- Mullah, N -- Zalipsky, S -- GM 47334/GM/NIGMS NIH HHS/ -- GM17876/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Feb 7;275(5301):820-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA. jywong@engineering.ucsb.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9012346" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/*metabolism ; Binding Sites ; Biotin/chemistry/*metabolism ; Chemistry, Physical ; Ligands ; Lipid Bilayers ; Mathematics ; Models, Chemical ; Molecular Conformation ; Physicochemical Phenomena ; Polyethylene Glycols/chemistry/*metabolism ; Streptavidin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1989-11-17
    Description: The surface forces apparatus technique was used for measuring the adhesion, deformation, and fusion of bilayers supported on mica surfaces in aqueous solutions. The most important force leading to the direct fusion of bilayers is the hydrophobic interaction, although the occurrence of fusion is not simply related to the force law between bilayers. Bilayers do not need to "overcome" some repulsive force barrier, such as hydration, before they can fuse. Instead, once bilayer surfaces come within about 1 nanometer of each other, local deformations and molecular rearrangements allow them to "bypass" these forces.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Helm, C A -- Israelachvili, J N -- McGuiggan, P M -- New York, N.Y. -- Science. 1989 Nov 17;246(4932):919-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Nuclear Engineering, University of California, Santa Barbara 93106.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2814514" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Phenomena ; Chemistry ; *Lipid Bilayers ; Models, Biological ; Models, Structural ; Phosphatidylcholines ; Phosphatidylethanolamines
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1993-04-30
    Description: Lattice mismatch stresses, which severely restrict heteroepitaxial growth, are greatly minimized when thin alumina films are grown by means of van der Waals forces on inert mica substrates. A 10-nanometer-thick epitaxial film exhibits crystallographic sixfold symmetry, a lattice constant close to that of the basal plane [0001] of alpha-alumina (sapphire), and an aluminum: oxygen atomic ratio of 1:1.51 +/- 0.02 (measured by x-ray photoelectron spectroscopy), again the same as for bulk sapphire. The film is free of steps and grain boundaries over large areas and appears to be an ideal model system for studying adhesion, tribology, and other surface phenomena at atomic scales.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steinberg, S -- Ducker, W -- Vigil, G -- Hyukjin, C -- Frank, C -- Tseng, M Z -- Clarke, D R -- Israelachvili, J N -- New York, N.Y. -- Science. 1993 Apr 30;260(5108):656-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17812223" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1994-06-24
    Description: An x-ray surface forces apparatus for simultaneously measuring forces and structures of confined complex fluids under static and flow conditions is described. This apparatus, combined with an intense synchrotron x-ray source, allows investigation of molecular orientations within a thin liquid crystal film confined between two shearing mica surfaces 3900 angstroms apart. The layer-forming smectic liquid crystal 8CB (4-cyano-4'-octylbiphenyl) adopted a series of distinct planar layer orientations, including the bulk flow-forbidden b orientation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Idziak, S H -- Safinya, C R -- Hill, R S -- Kraiser, K E -- Ruths, M -- Warriner, H E -- Steinberg, S -- Liang, K S -- Israelachvili, J N -- New York, N.Y. -- Science. 1994 Jun 24;264(5167):1915-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17794078" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-03-13
    Description: A surface force apparatus was used to measure a long-range attractive protein-ligand force at separations D less than 85 angstroms. This force may effectively "steer" ligand trajectories, resulting in a greater than 27-fold enhancement of the association rate. A much stronger specific attraction is measured at contact (D less than 4 angstroms). A sevenfold increase in intermembrane adhesion resulted from increased lateral mobility of the receptors and molecular rearrangements in membranes above the solid-fluid transition temperature.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leckband, D E -- Israelachvili, J N -- Schmitt, F J -- Knoll, W -- GM13300/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Mar 13;255(5050):1419-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Nuclear Engineering, University of California, Santa Barbara 93106.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1542789" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/metabolism ; Biotin/metabolism ; Chemistry, Physical ; Electrochemistry ; *Ligands ; Lipid Bilayers ; Models, Chemical ; Physicochemical Phenomena ; Protein Binding/*physiology ; Streptavidin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-09-03
    Description: The viscosity of colloidal suspensions varies with shear rate, an important effect encountered in many natural and industrial processes. Although this non-Newtonian behavior is believed to arise from the arrangement of suspended particles and their mutual interactions, microscopic particle dynamics are difficult to measure. By combining fast confocal microscopy with simultaneous force measurements, we systematically investigate a suspension's structure as it transitions through regimes of different flow signatures. Our measurements of the microscopic single-particle dynamics show that shear thinning results from the decreased relative contribution of entropic forces and that shear thickening arises from particle clustering induced by hydrodynamic lubrication forces. This combination of techniques illustrates an approach that complements current methods for determining the microscopic origins of non-Newtonian flow behavior in complex fluids.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, Xiang -- McCoy, Jonathan H -- Israelachvili, Jacob N -- Cohen, Itai -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1276-9. doi: 10.1126/science.1207032.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Cornell University, Ithaca, NY 14853, USA. xc92@cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21885778" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-08
    Description: In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is severely limited by high salt, pH, and hydration, yet these conditions have not deterred the evolution of effective adhesion by mussels. Mussel foot proteins provide insights about adhesive adaptations: Notably, the abundance and proximity of catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues hint at a synergistic interplay in adhesion. Certain siderophores-bacterial iron chelators-consist of paired catechol and lysine functionalities, thereby providing a convenient experimental platform to explore molecular synergies in bioadhesion. These siderophores and synthetic analogs exhibit robust adhesion energies (E(ad) 〉/=-15 millijoules per square meter) to mica in saline pH 3.5 to 7.5 and resist oxidation. The adjacent catechol-lysine placement provides a "one-two punch," whereby lysine evicts hydrated cations from the mineral surface, allowing catechol binding to underlying oxides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maier, Greg P -- Rapp, Michael V -- Waite, J Herbert -- Israelachvili, Jacob N -- Butler, Alison -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):628-32. doi: 10.1126/science.aab0556.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA. ; Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA. ; Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA. herbert.waite@lifesci.ucsb.edu jacob@engineering.ucsb.edu butler@chem.ucsb.edu. ; Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA. Materials Department, University of California, Santa Barbara, CA 93106, USA. herbert.waite@lifesci.ucsb.edu jacob@engineering.ucsb.edu butler@chem.ucsb.edu. ; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA. herbert.waite@lifesci.ucsb.edu jacob@engineering.ucsb.edu butler@chem.ucsb.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26250681" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesiveness ; Adhesives/*chemistry ; Aluminum Silicates/chemistry ; Catechols/*chemistry ; Dihydroxyphenylalanine/*chemistry ; Hydrogen-Ion Concentration ; Lysine/*chemistry ; Molecular Mimicry ; Oxidation-Reduction ; Proteins/*chemistry ; Siderophores/*chemistry ; Titanium/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-09-06
    Description: Reactivity in confinement is central to a wide range of applications and systems, yet it is notoriously difficult to probe reactions in confined spaces in real time. Using a modified electrochemical surface forces apparatus (EC-SFA) on confined metallic surfaces, we observe in situ nano- to microscale dissolution and pit formation...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...