ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
  • 1
    Publication Date: 2020-10-02
    Print ISSN: 0950-091X
    Electronic ISSN: 1365-2117
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1987-12-01
    Print ISSN: 0040-1951
    Electronic ISSN: 1879-3266
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-01
    Description: The Red Sea is an important example of a rifted continental shield proceeding to seafloor spreading. However, whether the crust in the central Red Sea is continental or oceanic has been controversial. Contributing to this debate, we assess the basement geometry using seismic reflection and potential field data. We find that the basement topography from seismically derived structure corrected for evaporite and other sediment loading has an axial high with a width of 70–100 km and a height of 0.8–1.6 km. Basement axial highs are commonly found at mid-ocean ridges affected by hotspots, where enhanced mantle melting results in thickened crust. We therefore interpret this axial high as oceanic-like, potentially produced by recently enhanced melting associated with the broader Afar mantle anomaly. We also find the Bouguer gravity anomalies are strongly correlated with basement reflection depths. The apparent density contrast necessary to explain the Bouguer anomaly varies from 220 kg m−3 to 580 kg m−3 with no trend with latitude. These values are too small to be caused primarily by the density contrast between evaporites and mantle across a crust of uniform thickness and density structure, further supporting a thickened crustal origin for the axial high. Complicating interpretation, only a normal to modestly thickened axial crust is predicted from fractionation-corrected sodium contents (Na8.0), and the basement reflection is rugged, more typical of ultra-slow spreading ridges that are not close to hotspots. We try to reconcile these observations with recent results from seismic tomography, which show modest mantle S-wave velocity anomalies under this part of the Red Sea.
    Print ISSN: 0040-1951
    Electronic ISSN: 1879-3266
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Tectonophysics, 747/748 . pp. 327-342.
    Publication Date: 2020-01-02
    Description: Highlights • Deep seismic data reveal oceanic-like axial ridge beneath central Red Sea. • Axial high is similar to those of hotspot-affected spreading centres. • Bouguer anomalies predict low average density beneath axis. • This low density implies thickened crust and/or low mantle density. • Normal thickness predicted from Na8.0 implies recent transition from thinner crust. Abstract The Red Sea is an important example of a rifted continental shield proceeding to seafloor spreading. However, whether the crust in the central Red Sea is continental or oceanic has been controversial. Contributing to this debate, we assess the basement geometry using seismic reflection and potential field data. We find that the basement topography from seismically derived structure corrected for evaporite and other sediment loading has an axial high with a width of 70–100 km and a height of 0.8–1.6 km. Basement axial highs are commonly found at mid-ocean ridges affected by hotspots, where enhanced mantle melting results in thickened crust. We therefore interpret this axial high as oceanic-like, potentially produced by recently enhanced melting associated with the broader Afar mantle anomaly. We also find the Bouguer gravity anomalies are strongly correlated with basement reflection depths. The apparent density contrast necessary to explain the Bouguer anomaly varies from 220 kg m−3 to 580 kg m−3 with no trend with latitude. These values are too small to be caused primarily by the density contrast between evaporites and mantle across a crust of uniform thickness and density structure, further supporting a thickened crustal origin for the axial high. Complicating interpretation, only a normal to modestly thickened axial crust is predicted from fractionation-corrected sodium contents (Na8.0), and the basement reflection is rugged, more typical of ultra-slow spreading ridges that are not close to hotspots. We try to reconcile these observations with recent results from seismic tomography, which show modest mantle S-wave velocity anomalies under this part of the Red Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-26
    Description: The Red Sea is an important example of a continental rift transitioning slowly to an oceanic basin. However, structures that can inform us of how that transition occurred have been poorly reported because deep seismic reflection data capable of imaging basement under the rift sediments are generally lacking publicly. Three lines of multichannel seismic reflection data have recently been published revealing structures on the Nubian side of the central part of the basin. In this study, we reassess these data in the light of recent studies of the central Red Sea. Over continental crust, the data reveal reflection sequences likely due to strata at or near the base of the evaporites, in two cases with varied dips suggesting the presence of syn-rift growth stratigraphy. Almost all of those reflections dip downwards towards the rift axis, not away as would be expected from tilted fault blocks of bookshelf faulting types. That observation, and low relief of basement, confirm inferences made earlier based on gravity anomalies that this part of the Red Sea lacks large-relief fault escarpments and is most likely a syn-rift sag basin. In the transition to oceanic crust, an abnormally broad magnetic anomaly of estimated Chron 5 age is found not to be associated with structures such as sills, so it likely arises from deeper sources. One of the seismic lines traverses a ridge in Bouguer gravity anomalies that runs across the axis. This feature has previously been interpreted as a volcanic ridge similar to those observed at other ultra-slow spreading ridges. The seismic data reveal diffuse basement reflections and confirm that the record immediately above basement lacks reflections typical of sedimentary strata. Both observations are consistent with the presence of oceanic crust. Modelling of gravity anomalies suggests the ridge is likely underlain by igneous intrusive rocks displacing mantle rocks, as expected for a volcanic ridge. The seismic data, combined with recently updated multibeam and high-resolution sparker seismic results, further suggest how the evaporite movements have been modulated by basement topography. These results add to our knowledge of the evaporite movements and continent-ocean transition structures in the central Red Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...