ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-05-24
    Description: Proteasomal receptors that recognize ubiquitin chains attached to substrates are key mediators of selective protein degradation in eukaryotes. Here we report the identification of a new ubiquitin receptor, Rpn13/ARM1, a known component of the proteasome. Rpn13 binds ubiquitin through a conserved amino-terminal region termed the pleckstrin-like receptor for ubiquitin (Pru) domain, which binds K48-linked diubiquitin with an affinity of approximately 90 nM. Like proteasomal ubiquitin receptor Rpn10/S5a, Rpn13 also binds ubiquitin-like (UBL) domains of UBL-ubiquitin-associated (UBA) proteins. In yeast, a synthetic phenotype results when specific mutations of the ubiquitin binding sites of Rpn10 and Rpn13 are combined, indicating functional linkage between these ubiquitin receptors. Because Rpn13 is also the proteasomal receptor for Uch37, a deubiquitinating enzyme, our findings suggest a coupling of chain recognition and disassembly at the proteasome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2839886/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2839886/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Husnjak, Koraljka -- Elsasser, Suzanne -- Zhang, Naixia -- Chen, Xiang -- Randles, Leah -- Shi, Yuan -- Hofmann, Kay -- Walters, Kylie J -- Finley, Daniel -- Dikic, Ivan -- CA097004/CA/NCI NIH HHS/ -- GM008700/GM/NIGMS NIH HHS/ -- GM043601/GM/NIGMS NIH HHS/ -- R01 CA097004/CA/NCI NIH HHS/ -- R01 CA097004-05/CA/NCI NIH HHS/ -- R01 CA097004-06A1/CA/NCI NIH HHS/ -- R37 GM043601/GM/NIGMS NIH HHS/ -- R37 GM043601-17/GM/NIGMS NIH HHS/ -- T32 GM008700/GM/NIGMS NIH HHS/ -- T32 GM008700-09/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 May 22;453(7194):481-8. doi: 10.1038/nature06926.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry II and Cluster of Excellence Macromolecular Complexes, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497817" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites/genetics ; Cell Adhesion Molecules/chemistry/genetics/metabolism ; Humans ; Membrane Glycoproteins/chemistry/genetics/metabolism ; Mice ; Molecular Sequence Data ; Mutation/genetics ; Phenotype ; Proteasome Endopeptidase Complex/*chemistry/genetics/*metabolism ; Protein Subunits/chemistry/genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/metabolism ; Ubiquitin/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-05-24
    Description: Targeted protein degradation is largely performed by the ubiquitin-proteasome pathway, in which substrate proteins are marked by covalently attached ubiquitin chains that mediate recognition by the proteasome. It is currently unclear how the proteasome recognizes its substrates, as the only established ubiquitin receptor intrinsic to the proteasome is Rpn10/S5a (ref. 1), which is not essential for ubiquitin-mediated protein degradation in budding yeast. In the accompanying manuscript we report that Rpn13 (refs 3-7), a component of the nine-subunit proteasome base, functions as a ubiquitin receptor, complementing its known role in docking de-ubiquitinating enzyme Uch37/UCHL5 (refs 4-6) to the proteasome. Here we merge crystallography and NMR data to describe the ubiquitin-binding mechanism of Rpn13. We determine the structure of Rpn13 alone and complexed with ubiquitin. The co-complex reveals a novel ubiquitin-binding mode in which loops rather than secondary structural elements are used to capture ubiquitin. Further support for the role of Rpn13 as a proteasomal ubiquitin receptor is demonstrated by its ability to bind ubiquitin and proteasome subunit Rpn2/S1 simultaneously. Finally, we provide a model structure of Rpn13 complexed to diubiquitin, which provides insights into how Rpn13 as a ubiquitin receptor is coupled to substrate deubiquitination by Uch37.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825158/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825158/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schreiner, Patrick -- Chen, Xiang -- Husnjak, Koraljka -- Randles, Leah -- Zhang, Naixia -- Elsasser, Suzanne -- Finley, Daniel -- Dikic, Ivan -- Walters, Kylie J -- Groll, Michael -- CA097004/CA/NCI NIH HHS/ -- GM008700/GM/NIGMS NIH HHS/ -- GM43601/GM/NIGMS NIH HHS/ -- R01 CA097004/CA/NCI NIH HHS/ -- R01 CA097004-05/CA/NCI NIH HHS/ -- R01 CA097004-06A1/CA/NCI NIH HHS/ -- R37 GM043601/GM/NIGMS NIH HHS/ -- R37 GM043601-17/GM/NIGMS NIH HHS/ -- T32 GM008700/GM/NIGMS NIH HHS/ -- T32 GM008700-09/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 May 22;453(7194):548-52. doi: 10.1038/nature06924.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrated Protein Science at the Department Chemie, Lehrstuhl fur Biochemie, Technische Universitat Munchen, Lichtenbergstrasse 4, D-85747 Garching, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497827" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cell Adhesion Molecules/*chemistry/genetics/*metabolism ; Crystallography, X-Ray ; Humans ; Membrane Glycoproteins/chemistry/genetics/metabolism ; Mice ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Proteasome Endopeptidase Complex/*chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/genetics/metabolism ; Ubiquitin/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-03-28
    Description: The ubiquitin system is a network of proteins dedicated to the ubiquitylation of cellular targets and the subsequent control of numerous cellular functions. The deregulation of components of this elaborate network leads to human pathogenesis, including the development of many types of tumour. Alterations in the ubiquitin system that occur during the initiation and progression of cancer are now being uncovered, and this knowledge is starting to be exploited for both molecular diagnostics and the development of novel strategies to combat cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoeller, Daniela -- Dikic, Ivan -- England -- Nature. 2009 Mar 26;458(7237):438-44. doi: 10.1038/nature07960.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Medical Biochemistry, Innsbruck Medical University, Biocenter, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19325623" target="_blank"〉PubMed〈/a〉
    Keywords: Apoptosis/drug effects ; Humans ; Neoplasms/blood supply/*drug therapy/*enzymology/pathology ; Neovascularization, Pathologic/drug therapy ; Proteasome Endopeptidase Complex/metabolism ; Proteasome Inhibitors ; SUMO-1 Protein/metabolism ; Ubiquitin/*metabolism ; Ubiquitin-Protein Ligases/antagonists & inhibitors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-05
    Description: The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khaminets, Aliaksandr -- Heinrich, Theresa -- Mari, Muriel -- Grumati, Paolo -- Huebner, Antje K -- Akutsu, Masato -- Liebmann, Lutz -- Stolz, Alexandra -- Nietzsche, Sandor -- Koch, Nicole -- Mauthe, Mario -- Katona, Istvan -- Qualmann, Britta -- Weis, Joachim -- Reggiori, Fulvio -- Kurth, Ingo -- Hubner, Christian A -- Dikic, Ivan -- England -- Nature. 2015 Jun 18;522(7556):354-8. doi: 10.1038/nature14498. Epub 2015 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany. ; Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Kollegiengasse 10, 07743 Jena, Germany. ; 1] Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands [2] Department of Cell Biology, University Medical Center Utrecht, University of Groningen, Antonious Deusinglaan 1, 3713 AV Groningen, The Netherlands. ; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany. ; Electron Microscopy Center, Jena University Hospital, Friedrich-Schiller-University Jena, Ziegelmuhlenweg 1, 07743 Jena, Germany. ; Institute for Biochemistry I, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany. ; Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany. ; 1] Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany [2] Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany [3] Institute of Immunology, School of Medicine University of Split, Mestrovicevo setaliste bb, 21 000 Split, Croatia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26040720" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Apoptosis ; Autophagy/*physiology ; Biomarkers/metabolism ; Cell Line ; Endoplasmic Reticulum/chemistry/*metabolism ; Female ; Gene Deletion ; Humans ; Lysosomes/metabolism ; Male ; Membrane Proteins/deficiency/genetics/*metabolism ; Mice ; Microtubule-Associated Proteins/metabolism ; Neoplasm Proteins/deficiency/genetics/*metabolism ; Phagosomes/metabolism ; Protein Binding ; Sensory Receptor Cells/metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-12-17
    Description: Translesion synthesis (TLS) is the major pathway by which mammalian cells replicate across DNA lesions. Upon DNA damage, ubiquitination of proliferating cell nuclear antigen (PCNA) induces bypass of the lesion by directing the replication machinery into the TLS pathway. Yet, how this modification is recognized and interpreted in the cell remains unclear. Here we describe the identification of two ubiquitin (Ub)-binding domains (UBM and UBZ), which are evolutionarily conserved in all Y-family TLS polymerases (pols). These domains are required for binding of poleta and poliota to ubiquitin, their accumulation in replication factories, and their interaction with monoubiquitinated PCNA. Moreover, the UBZ domain of poleta is essential to efficiently restore a normal response to ultraviolet irradiation in xeroderma pigmentosum variant (XP-V) fibroblasts. Our results indicate that Ub-binding domains of Y-family polymerases play crucial regulatory roles in TLS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bienko, Marzena -- Green, Catherine M -- Crosetto, Nicola -- Rudolf, Fabian -- Zapart, Grzegorz -- Coull, Barry -- Kannouche, Patricia -- Wider, Gerhard -- Peter, Matthias -- Lehmann, Alan R -- Hofmann, Kay -- Dikic, Ivan -- New York, N.Y. -- Science. 2005 Dec 16;310(5755):1821-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16357261" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cell Line ; Computational Biology ; DNA/*biosynthesis ; *DNA Damage ; DNA Repair ; DNA Replication ; DNA-Directed DNA Polymerase/*chemistry/genetics/*metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Point Mutation ; Proliferating Cell Nuclear Antigen/metabolism ; Protein Binding ; Protein Conformation ; Protein Interaction Mapping ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Transfection ; Ubiquitin/*metabolism ; Xeroderma Pigmentosum/genetics ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-04-02
    Description: SHARPIN is a ubiquitin-binding and ubiquitin-like-domain-containing protein which, when mutated in mice, results in immune system disorders and multi-organ inflammation. Here we report that SHARPIN functions as a novel component of the linear ubiquitin chain assembly complex (LUBAC) and that the absence of SHARPIN causes dysregulation of NF-kappaB and apoptotic signalling pathways, explaining the severe phenotypes displayed by chronic proliferative dermatitis (cpdm) in SHARPIN-deficient mice. Upon binding to the LUBAC subunit HOIP (also known as RNF31), SHARPIN stimulates the formation of linear ubiquitin chains in vitro and in vivo. Coexpression of SHARPIN and HOIP promotes linear ubiquitination of NEMO (also known as IKBKG), an adaptor of the IkappaB kinases (IKKs) and subsequent activation of NF-kappaB signalling, whereas SHARPIN deficiency in mice causes an impaired activation of the IKK complex and NF-kappaB in B cells, macrophages and mouse embryonic fibroblasts (MEFs). This effect is further enhanced upon concurrent downregulation of HOIL-1L (also known as RBCK1), another HOIP-binding component of LUBAC. In addition, SHARPIN deficiency leads to rapid cell death upon tumour-necrosis factor alpha (TNF-alpha) stimulation via FADD- and caspase-8-dependent pathways. SHARPIN thus activates NF-kappaB and inhibits apoptosis via distinct pathways in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085511/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085511/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ikeda, Fumiyo -- Deribe, Yonathan Lissanu -- Skanland, Sigrid S -- Stieglitz, Benjamin -- Grabbe, Caroline -- Franz-Wachtel, Mirita -- van Wijk, Sjoerd J L -- Goswami, Panchali -- Nagy, Vanja -- Terzic, Janos -- Tokunaga, Fuminori -- Androulidaki, Ariadne -- Nakagawa, Tomoko -- Pasparakis, Manolis -- Iwai, Kazuhiro -- Sundberg, John P -- Schaefer, Liliana -- Rittinger, Katrin -- Macek, Boris -- Dikic, Ivan -- AR049288/AR/NIAMS NIH HHS/ -- MC_U117565398/Medical Research Council/United Kingdom -- R01 AR049288/AR/NIAMS NIH HHS/ -- R01 AR049288-07/AR/NIAMS NIH HHS/ -- England -- Nature. 2011 Mar 31;471(7340):637-41. doi: 10.1038/nature09814.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Frankfurt Institute for Molecular Life Sciences and Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, D-60590 Frankfurt, Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21455181" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis/drug effects ; B-Lymphocytes/metabolism ; Carrier Proteins/metabolism ; Caspase 8/metabolism ; Cells, Cultured ; Dermatitis/genetics/metabolism/pathology ; Fas-Associated Death Domain Protein/metabolism ; Fibroblasts/metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; I-kappa B Kinase/metabolism ; Intracellular Signaling Peptides and Proteins/metabolism ; Macrophages/metabolism ; Mice ; NF-kappa B/*metabolism ; Nerve Tissue Proteins/deficiency/genetics/*metabolism ; Tumor Necrosis Factor-alpha/metabolism/pharmacology ; Ubiquitin/*metabolism ; Ubiquitin-Protein Ligase Complexes/*metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-10-22
    Description: Linear ubiquitin chains are important regulators of cellular signalling pathways that control innate immunity and inflammation through nuclear factor (NF)-kappaB activation and protection against tumour necrosis factor-alpha-induced apoptosis. They are synthesized by HOIP, which belongs to the RBR (RING-between-RING) family of E3 ligases and is the catalytic component of LUBAC (linear ubiquitin chain assembly complex), a multisubunit E3 ligase. RBR family members act as RING/HECT hybrids, employing RING1 to recognize ubiquitin-loaded E2 while a conserved cysteine in RING2 subsequently forms a thioester intermediate with the transferred or 'donor' ubiquitin. Here we report the crystal structure of the catalytic core of HOIP in its apo form and in complex with ubiquitin. The carboxy-terminal portion of HOIP adopts a novel fold that, together with a zinc-finger, forms a ubiquitin-binding platform that orients the acceptor ubiquitin and positions its alpha-amino group for nucleophilic attack on the E3 approximately ubiquitin thioester. The C-terminal tail of a second ubiquitin molecule is located in close proximity to the catalytic cysteine, providing a unique snapshot of the ubiquitin transfer complex containing both donor and acceptor ubiquitin. These interactions are required for activation of the NF-kappaB pathway in vivo, and they explain the determinants of linear ubiquitin chain specificity by LUBAC.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838313/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838313/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stieglitz, Benjamin -- Rana, Rohini R -- Koliopoulos, Marios G -- Morris-Davies, Aylin C -- Schaeffer, Veronique -- Christodoulou, Evangelos -- Howell, Steven -- Brown, Nicholas R -- Dikic, Ivan -- Rittinger, Katrin -- 094112/Wellcome Trust/United Kingdom -- 250241/European Research Council/International -- MC_U117565398/Medical Research Council/United Kingdom -- U117565398/Medical Research Council/United Kingdom -- England -- Nature. 2013 Nov 21;503(7476):422-6. doi: 10.1038/nature12638. Epub 2013 Oct 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24141947" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry/metabolism ; Catalytic Domain ; Crystallography, X-Ray ; HeLa Cells ; Humans ; Models, Molecular ; Protein Conformation ; Substrate Specificity ; Ubiquitin/*chemistry/*metabolism ; Ubiquitin-Protein Ligases/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-08-09
    Description: The c-Jun amino-terminal kinase (JNK) is activated by various heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors, inflammatory cytokines, and stress signals. Yet, upstream mediators that link extracellular signals with the JNK signaling pathway are currently unknown. The tyrosine kinase Pyk2 was activated by tumor necrosis factor alpha, by ultraviolet irradiation, and by changes in osmolarity. Overexpression of Pyk2 led to activation of JNK, and a dominant-negative mutant of Pyk2 interfered with ultraviolet light- or osmotic shock-induced activation of JNK. Pyk2 represents a cell type-specific, stress-sensitive mediator of the JNK signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tokiwa, G -- Dikic, I -- Lev, S -- Schlessinger, J -- New York, N.Y. -- Science. 1996 Aug 9;273(5276):792-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8670418" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anisomycin/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Egtazic Acid/pharmacology ; Enzyme Activation ; Focal Adhesion Kinase 2 ; GTP Phosphohydrolases/metabolism ; GTP-Binding Proteins/metabolism ; HL-60 Cells ; Humans ; JNK Mitogen-Activated Protein Kinases ; *Mitogen-Activated Protein Kinases ; Osmolar Concentration ; PC12 Cells ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Rats ; *Signal Transduction ; Sorbitol/pharmacology ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-11-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grabbe, Caroline -- Dikic, Ivan -- New York, N.Y. -- Science. 2008 Nov 7;322(5903):872-3. doi: 10.1126/science.1166845.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry II and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18988833" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Complementary ; Flow Cytometry ; Green Fluorescent Proteins/analysis/metabolism ; Humans ; Luminescent Proteins/analysis ; Open Reading Frames ; Proteasome Endopeptidase Complex/metabolism ; *Protein Stability ; Proteins/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Substrate Specificity ; Ubiquitin/*metabolism ; Ubiquitin-Protein Ligases/*metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-05-28
    Description: Selective autophagy can be mediated via receptor molecules that link specific cargoes to the autophagosomal membranes decorated by ubiquitin-like microtubule-associated protein light chain 3 (LC3) modifiers. Although several autophagy receptors have been identified, little is known about mechanisms controlling their functions in vivo. In this work, we found that phosphorylation of an autophagy receptor, optineurin, promoted selective autophagy of ubiquitin-coated cytosolic Salmonella enterica. The protein kinase TANK binding kinase 1 (TBK1) phosphorylated optineurin on serine-177, enhancing LC3 binding affinity and autophagic clearance of cytosolic Salmonella. Conversely, ubiquitin- or LC3-binding optineurin mutants and silencing of optineurin or TBK1 impaired Salmonella autophagy, resulting in increased intracellular bacterial proliferation. We propose that phosphorylation of autophagy receptors might be a general mechanism for regulation of cargo-selective autophagy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714538/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714538/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wild, Philipp -- Farhan, Hesso -- McEwan, David G -- Wagner, Sebastian -- Rogov, Vladimir V -- Brady, Nathan R -- Richter, Benjamin -- Korac, Jelena -- Waidmann, Oliver -- Choudhary, Chunaram -- Dotsch, Volker -- Bumann, Dirk -- Dikic, Ivan -- 250241/European Research Council/International -- New York, N.Y. -- Science. 2011 Jul 8;333(6039):228-33. doi: 10.1126/science.1205405. Epub 2011 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Frankfurt Institute for Molecular Life Sciences and Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617041" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; *Autophagy ; Cell Line, Tumor ; Cytosol/*microbiology ; HeLa Cells ; Humans ; Immunity, Innate ; Microtubule-Associated Proteins/metabolism ; Models, Biological ; Nuclear Proteins/chemistry/metabolism ; Phosphorylation ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein-Serine-Threonine Kinases/metabolism ; RNA Interference ; Salmonella typhimurium/*growth & development/immunology ; Transcription Factor TFIIIA/chemistry/genetics/*metabolism ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...