ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Freshwater biology 49 (2004), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. We investigated the impacts of saltcedar invasion on organic matter dynamics in a spring-fed stream (Jackrabbit Spring) in the Mojave Desert of southern Nevada, U.S.A., by experimentally manipulating saltcedar abundance.2. Saltcedar heavily shaded Jackrabbit Spring and shifted the dominant organic matter inputs from autochthonous production that was available throughout the year to allochthonous saltcedar leaf litter that was strongly pulsed in the autumn. Specifically, reaches dominated by saltcedar had allochthonous litter inputs of 299 g ash free dry mass (AFDM) m−2 year−1, macrophyte production of 15 g AFDM m−2 year−1 and algal production of 400 g AFDM m−2 year−1, while reaches dominated by native riparian vegetation or where saltcedar had been experimentally removed had allochthonous litter inputs of 7–34 g AFDM m−2 year−1, macrophyte production of 118–425 g AFDM m−2 year−1 and algal production of 640–900 g AFDM m−2 year−1.3. A leaf litter breakdown study indicated that saltcedar also altered decomposition in Jackrabbit Spring, mainly through its influence on litter quality rather than by altering the environment for decomposition. Decomposition rates for saltcedar were lower than for ash (Fraxinus velutina), the dominant native allochthonous litter type, but faster than for bulrush (Scirpus americanus), the dominant macrophyte in this system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Global change biology 6 (2000), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Despite the importance of Arctic and boreal regions in the present carbon cycle, estimates of annual high-latitude carbon fluxes vary in sign and magnitude. Without accurate estimates of current carbon fluxes from Arctic and boreal ecosystems, predicting the response of these systems to global change is daunting. A number of factors control carbon turnover in high-latitude soils, but because they are unique to northern systems, they are mostly ignored by biogeochemical models used to predict the response of these systems to global change. Here, we review those factors. First, many northern systems are dominated by mosses, whose extremely slow decomposition is not predicted by commonly used indices of litter quality. Second, cold temperature, permafrost, waterlogging, and substrate quality interact to stabilize soil organic matter, but the relative importance of these factors, and how they respond to climate change, is unknown. Third, recent evidence suggests that biological activity occurring over winter can contribute significantly to annual soil carbon fluxes. However, the controls over this winter activity remain poorly understood. Finally, processes at the landscape scale, such as fire, permafrost dynamics, and drainage, control regional carbon fluxes, complicating the extrapolation of site-level measurements to regional scales.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Human alteration of the global environment has triggered the sixth major extinction event in the history of life and caused widespread changes in the global distribution of organisms. These changes in biodiversity alter ecosystem processes and change the resilience of ecosystems to environmental ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 121 (1999), S. 564-573 
    ISSN: 1432-1939
    Keywords: Key words Fertilization ; Lignin-to-nitrogen ratios ; Metrosideros polymorpha ; Nutrient accumulation ; Nutrient limitation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We examined the effects of soil nutrient availability and tissue chemistry on decomposition of both fine roots (〈2 mm diameter) and leaves in three sites along a forest chronosequence in the Hawaiian Islands. These sites form a natural fertility gradient, with the youngest and oldest sites having lower nutrient availability than the intermediate-aged site. Nitrogen (N) limits aboveground net primary productivity (ANPP) in the youngest site, while phosphorus (P) limits ANPP in the oldest site. Both root and leaf litter decomposed most slowly in the 4.1-Myear-old site. We also investigated root decomposition in fertilized plots at the youngest and oldest sites; when roots were produced and decomposed in fertilized plots, root decomposition rates increased with N and P additions at the 4.1-Myear-old site. At the 300-year-old site, however, root decomposition rates did not respond to N or P additions. Roots decomposed faster than leaves at the more infertile sites, in part because of lower lignin-to-nitrogen ratios in roots than in leaf litter. Decomposing roots immobilized more nutrients than did decomposing leaves, and may serve an important role in retaining nutrients in these forests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1435-0629
    Keywords: Key words: decomposition; fertilization; Hawaii; lignin; Metrosideros polymorpha; nitrogen.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Previous work in a young Hawaiian forest has shown that nitrogen (N) limits aboveground net primary production (ANPP) more strongly than it does decomposition, despite low soil N availability. In this study, I determined whether (a) poor litter C quality (that is, high litter lignin) poses an overriding constraint on decomposition, preventing decomposers from responding to added N, or (b) high N levels inhibit lignin degradation, lessening the effects of added N on decomposition overall. I obtained leaf litter from one species, Metrosideros polymorpha, which dominates a range of sites in the Hawaiian Islands and whose litter lignin concentration declines with decreasing precipitation. Litter from three dry sites had lignin concentrations of 12% or less, whereas litter from two wet sites, including the study site, had lignin concentrations of more than 18%. This litter was deployed 2.5 years in a common site in control plots (receiving no added nutrients) and in N-fertilized plots. Nitrogen fertilization stimulated decomposition of the low-lignin litter types more than that of the high-lignin litter types. However, in contrast to results from temperate forests, N did not inhibit lignin decomposition. Rather, lignin decay increased with added N, suggesting that the small effect of N on decomposition at this site results from limitation of decomposition by poor C quality rather than from N inhibition of lignin decay. Even though ANPP is limited by N, decomposers are strongly limited by C quality. My results suggest that anthropogenic N deposition may increase leaf litter decomposition more in ecosystems characterized by low-lignin litter than in those characterized by high-lignin litter.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 35 (1996), S. 327-338 
    ISSN: 1573-515X
    Keywords: Eriophorum ; freeze-thaw ; Hylocomium ; litter nitrogen ; Sphagnum ; tundra decomposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Mass and nitrogen (N) dynamics of leaf litter measured in Alaskan tussock tundra differed greatly from measurements of these processes made in temperate ecosystems. Nearly all litter mass and N loss occurred during the winter when soils were mostly frozen. Litter lost mass during the first summer, but during the subsequent two summers when biological activity was presumably higher than it is during winter, litter mass remained constant and litter immobilized N. By contrast, litter lost significant mass and N over both winters of measurement. Mass loss and N dynamics were unaffected by microsite variation in soil temperature and moisture. Whether wintertime mass and N loss resulted from biological activity during winter or from physical processes (e.g., fragmentation or leaching) associated with freeze-thaw is unknown, but has implications for how future climate warming will alter carbon (C) and N cycling in tundra. We hypothesize that spring runoff over permafrost as soils melt results in significant losses of C and N from litter, consistent with the observed influx of terrestrial organic matter to tundra lakes and streams after snow melt and the strong N limitation of terrestrial primary production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-515X
    Keywords: DOC ; DON ; DOP ; Hawaii ; soil ; soluble organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We measured DOM fluxes from the O horizon of Hawaiiansoils that varied in nutrient availability and mineralcontent to examine what regulates the flux ofdissolved organic carbon (DOC), nitrogen (DON) andphosphorus (DOP) from the surface layer of tropicalsoils. We examined DOM fluxes in a laboratory study from N, P and N+Pfertilized and unfertilized sites on soils that rangedin age from 300 to 4 million years old. The fluxesof DOC and DON were generally related to the % Cand % N content of the soils across the sites. Ingeneral, CO2 and DOC fluxes were not correlatedsuggesting that physical desorption, dissolution andsorption reactions primarily control DOM release fromthese surface horizons. The one exception to thispattern was at the oldest site where there was asignificant relationship between DOC and CO2flux. The oldest site also contained the lowestmineral and allophane content of the three sites andthe DOC-respiration correlation indicates arelationship between microbial activity and DOC fluxat this site. N Fertilization increased DON fluxes by50% and decreased DOC:DON ratios in the youngest,most N poor site. In the older, more N rich sites, Nfertilization neither increased DON fluxes nordecreased DOM C:N ratios. Similarly, short termchanges in N availability in laboratory-based soil Nand P fertilization experiments did not affect the DOMC:N ratios of leachate. DOM C:N ratios were similar tosoil organic matter C:N ratios, and changes in DOM C:Nratios with fertilization appeared to have beenmediated through long term effects on SOM C:N ratiosrather than through changes in microbial demand for Cand N. There was no relationship between DON andinorganic N flux during these incubations suggestingthat the organic and inorganic components of N fluxfrom soils are regulated by different factors and thatDON fluxes are not coupled to immediate microbialdemand for N. In contrast to the behavior of DON, thenet flux of dissolved organic phosphorus (DOP) and DOMC:P ratios responded to both long-term P fertilizationand natural variation in reactive P availability. There was lower DOP flux and higher DOM C:P ratiosfrom soils characterized by low P availability andhigh DOP flux and narrow DOM C:P ratios in sites withhigh P availability. DOP fluxes were also closelycorrelated with dissolved inorganic P fluxes. PFertilization increased DOP fluxes by 73% in theyoungest site, 31% in the P rich intermediate agesite and 444% in the old, P poor site indicating thatDOP fluxes closely track P availability in soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-09-25
    Description: Decomposition is a key component of the global carbon (C) cycle, yet current ecosystem C models do not adequately represent the contributions of plant roots and their mycorrhizae to this process. The understanding of decomposition dynamics and their control by traits is particularly limited for the most distal first-order roots. Here we followed decomposition of first-order roots and leaf litter from 35 woody plant species differing in mycorrhizal type over 6 years in a Chinese temperate forest. First-order roots decomposed more slowly (k = 0.11 ± 0.01 years−1) than did leaf litter (0.35 ± 0.02 years−1), losing only 35% of initial mass on average after 6 years of exposure in the field. In contrast to leaf litter, nonlignin root C chemistry (nonstructural carbohydrates, polyphenols) accounted for 82% of the large interspecific variation in first-order root decomposition. Leaf litter from ectomycorrhizal (EM) species decomposed more slowly than that from arbuscular mycorrhizal (AM) species, whereas first-order roots of EM species switched, after 2 years, from having slower to faster decomposition compared with those from AM species. The fundamentally different dynamics and control mechanisms of first-order root decomposition compared with those of leaf litter challenge current ecosystem C models, the recently suggested dichotomy between EM and AM plants, and the idea that common traits can predict decomposition across roots and leaves. Aspects of C chemistry unrelated to lignin or nitrogen, and not presently considered in decomposition models, controlled first-order root decomposition; thus, current paradigms of ecosystem C dynamics and model parameterization require revision.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-14
    Description: Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO3−) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO3− concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO3− that is typically below detection limits. Here we reexamine NO3− use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO3−. Soil-derived NO3− was detected in tundra plant tissues, and tundra plants took up soil NO3− at comparable rates to plants from relatively NO3−-rich ecosystems in other biomes. Nitrate assimilation determined by 15N enrichments of leaf NO3− relative to soil NO3− accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO3− availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO3− availability in tundra soils is crucial for predicting C storage in tundra.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...