ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-04-01
    Print ISSN: 0267-8179
    Electronic ISSN: 1099-1417
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-30
    Description: We use the three-dimensional Parallel Ice Sheet Model (PISM) to simulate Northern Hemisphere ice sheets evolution through the last glacial-interglacial cycle. The simulation is driven by the NGRIP δ18O index combined with climate forcing at two time slices, the Last Glacial Maximum (LGM) and present day (PD). In order to investigate the sensitivity of the ice sheets to the atmospheric forcing, atmospheric output from nine climate models from the Paleoclimate Modeling Intercomparison Project Phase III (PMIP3) are used to force the ice sheet model with the same set-up. The results show large diversity in simulated ice sheets between different models. By comparing the atmospheric forcing, we found that summer surface air temperature pattern resembles the ice sheet extent pattern at the LGM, which shows great sensitivity to summer surface air temperature. This implies that careful constrains on climate output is essential for simulating reliable glacial-interglacial Northern Hemisphere ice sheets. The ablation process is of vital importance for high-latitude Northern Hemisphere ice sheets. Besides, the absent nonlinear interactions between ice sheet and atmosphere and ocean, which have different signals regionally, also contribute to the mismatches between simulated ice sheets and geological evidences. Hence, we highlight the needs for coupling an ice sheet model to GCM to take into account these missing processes.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-03
    Description: The evolution of Northern Hemisphere ice sheets through the last glacial cycle is simulated with the glacial index method by using the climate forcing from one General Circulation Model, COSMOS. By comparing the simulated results to geological reconstructions, we first show that the modelled climate is capable of capturing the main features of the ice-sheet evolution. However, large deviations exist, likely due to the absence of nonlinear interactions between ice sheet and other climate components. The model uncertainties of the climate forcing are examined using the output from nine climate models from the Paleoclimate Modelling Intercomparison Project Phase III. The results show a large variability in simulated ice sheets between the different models. We find that the ice-sheet extent pattern resembles summer surface air temperature pattern at the Last Glacial Maximum, confirming the dominant role of surface ablation process for high-latitude Northern Hemisphere ice sheets. This study shows the importance of the upper boundary condition for ice-sheet modelling, and implies that careful constraints on climate output is essential for simulating realistic glacial Northern Hemisphere ice sheets.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-08
    Description: The evolution of Northern Hemisphere ice sheets through the last glacial cycle is simulated with the glacial index method by using the climate forcing from one General Circulation Model, COSMOS. By comparing the simulated results to geological reconstructions, we first show that the modelled climate is capable of capturing the main features of the ice-sheet evolution. However, large deviations exist, likely due to the absence of nonlinear interactions between ice sheet and other climate components. The model uncertainties of the climate forcing are examined using the output from nine climate models from the Paleoclimate Modelling Intercomparison Project Phase III. The results show a large variability in simulated ice sheets between the different models. We find that the ice-sheet extent pattern resembles summer surface air temperature pattern at the Last Glacial Maximum, confirming the dominant role of surface ablation process for high-latitude Northern Hemisphere ice sheets. This study shows the importance of the upper boundary condition for ice-sheet modelling, and implies that careful constraints on climate output is essential for simulating realistic glacial Northern Hemisphere ice sheets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-10
    Description: Geological records show that vast proglacial lakes existed along the land terminating margins of palaeo ice sheets in Europe and North America. Proglacial lakes impact ice sheet dynamics by imposing marine-like boundary conditions at the ice margin. These lacustrine boundary conditions include changes in the ice sheet’s geometry, stress balance and frontal ablation and therefore affect the entire ice sheet’s mass balance. This interaction, however, has not been rigorously implemented in ice sheet models. In this study, the implementation of an adaptive lake boundary into the Parallel Ice Sheet Model (PISM) is described and applied to the glacial retreat of the Laurentide Ice Sheet (LIS). The results show that the presence of proglacial lakes locally enhances the ice flow. Along the continental ice margin, ice streams and ice lobes can be observed. Lacustrine terminating ice streams cause immense thinning of the ice sheet’s interior and thus play a significant role in the demise of the LIS. Due to the presence of lakes, a process similar to the marine ice sheet instability causes the collapse of the ice saddle over Hudson Bay, which blocked drainage via the Hudson Strait. In control experiments without a lake model, Hudson Bay is still glaciated at the end of the simulation. Future studies should target the development of parametrizations that better describe the glacial-lacustrine interactions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: Along the margins of continental ice sheets, lakes formed in isostatically depressed basins duringglacial retreat. Their shorelines and extent are sensitive to the ice margin and the glacial history of the region.Proglacial lakes, in turn, also impact the glacial isostatic adjustment due to loading, and ice dynamics by posing amarine‐like boundary condition at the ice margin. In this study we present a tool that efficiently identifies lake basinsand the corresponding maximum water level for a given ice sheet and topography reconstruction. This algorithm,called the LakeCC model, iteratively checks the whole map for a set of increasing water levels and fills isolated basinsuntil they overflow into the ocean. We apply it to the present‐day Great Lakes and the results show good agreement(∼1−4%) with measured lake volume and depth. We then apply it to two topography reconstructions of NorthAmerica between the Last Glacial Maximum and the present. The model successfully reconstructs glacial lakes suchas Lake Agassiz, Lake McConnell and the predecessors of the Great Lakes. LakeCC can be used to judge the quality ofice sheet reconstructions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-08-01
    Description: During the Late Pleistocene and Holocene retreat of paleo-ice sheets in North America and Europe, vast proglacial lakes existed along the land terminating margins. These proglacial lakes impacted ice sheet dynamics by imposing boundary conditions analogous to a marine terminating margin. Such lacustrine boundary conditions cause changes in the ice sheet geometry, stress balance and frontal ablation and therefore affect the mass balance of the entire ice sheet. Despite this, dynamically evolving proglacial lakes have rarely been considered in detail in ice sheet modeling endeavors. In this study, we describe the implementation of an adaptive lake boundary in the Parallel Ice Sheet Model (PISM), which we call PISM-LakeCC. We test our model with a simplified glacial retreat setup of the Laurentide Ice Sheet (LIS). By comparing the experiments with lakes to control runs with no lakes, we show that the presence of proglacial lakes locally enhances the ice flow, which leads to a lowering of the ice sheet surface. In some cases, this also results in an advance of the ice margin and the emergence of ice lobes. In the warming climate, increased melting on the lowered ice surface drives the glacial retreat. For the LIS, the presence of lakes triggers a process similar to marine ice sheet instability, which caused the collapse of the ice saddle over Hudson Bay. In the control experiments without lakes, Hudson Bay is still glaciated when the climate reaches present-day (PD) conditions. The results of our study demonstrate that glacio-lacustrine interactions play a significant role in the retreat of land terminating ice sheet margins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-24
    Description: Spatially variable basal conditions are thought to govern how ice sheets behave at glacial time scales (〉1000 years) and responsible for changes in dynamics between the core and peripheral regions of the Laurentide and Fennoscandian ice sheets. Basal motion is accomplished via the deformation of unconsolidated sediments, or via sliding of the ice over an undeformable bed. We present an ice sheet sliding module for the Parallel Ice Sheet Model (PISM) that takes into account changes in sediment cover and incorporates surface meltwater. This model routes meltwater, produced at the surface and base of the ice sheet, toward the margin of the ice sheet. Basal sliding is accomplished through the deformation of water saturated sediments, or sliding at the ice-bed interface. In areas with continuous, water saturated sediments, sliding is almost always accomplished through sediment deformation. In areas with incomplete cover, sliding has a stronger dependence on the supply of water. We find that the addition of surface meltwater to the base is a more important factor for ice sheet evolution than the style of sliding. In a glacial cycle simulation, our model causes a more rapid buildup of the Laurentide Ice Sheet.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Using transient climate forcing based on simulations from the Alfred Wegener Institute Earth System Model (AWI-ESM), we simulate the evolution of the Greenland Ice Sheet (GrIS) from the last interglacial (125 ka, kiloyear before present) to 2100 AD with the Parallel Ice Sheet Model (PISM). The impact of paleoclimate, especially Holocene climate, on the present and future evolution of the GrIS is explored. Our simulations of the past show close agreement with reconstructions with respect to the recent timing of the peaks in ice volume and the climate of Greenland. The maximum and minimum ice volume at around 18–17 ka and 6–5 ka lag the respective extremes in climate by several thousand years, implying that the ice volume response of the GrIS strongly lags climatic changes. Given that Greenland’s climate was getting colder from the Holocene Thermal Maximum (i.e., 8 ka) to the Pre-Industrial era, our simulation implies that the GrIS experienced growth from the mid-Holocene to the industrial era. Due to this background trend, the GrIS still gains mass until the second half of the 20th century, even though anthropogenic warming begins around 1850 AD. This is also in agreement with observational evidence showing mass loss of the GrIS does not begin earlier than the late 20th century. Our results highlight that the present evolution of the GrIS is not only controlled by the recent climate changes, but is also affected by paleoclimate, especially the relatively warm Holocene climate. We propose that the GrIS was not in equilibrium throughout the entire Holocene and that the slow response to Holocene climate needs to be represented in ice sheet simulations in order to predict ice mass loss, and therefore sea level rise, accurately.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  EPIC3EGU General Assembly 2018, Vienna, Austria, 2018-04-07-2018-04-12
    Publication Date: 2019-01-04
    Description: Basal boundary conditions, such as basal geology, the presence of unconsolidated sediments, and hydrology, play a dominant role in the dynamics of ice sheets. One problem when studying existing ice sheets in Greenland and Antarctica is the lack of direct observations of these basal conditions. Studying paleo-ice sheet behaviour is advantageous in this respect, because these conditions are preserved in glacial landforms and sediments. By studying past ice sheet behaviour, we can provide analogues for modern behaviour. We investigate the role of basal geological conditions and hydrology on ice sheet dynamics using the ice sheet model PISM. We specifically focus on the North American ice sheet complex. We present datasets for this region that can be used in ice sheet models to investigate basal conditions including information on bedrock geology, the distribution of unconsolidated sediments, and the dominant grain size of the sediments. We use these datasets to investigate how they impact ice sheet dynamics with simulations over the last glacial cycle. We include a simple hydrology model that includes meltwater derived from the surface, and property changes depending on the basal geology from our datasets. Our results show that the behaviour of the ice sheet changes when there is a transition from regions with sparse sediment cover to complete sediment cover. One impact is that because ice can flow faster in regions like Hudson Bay, it can cause the Laurentide Ice Sheet to stabilize into a single continent-wide ice sheet faster than in a situation where sediments are not present. We also investigate the role of changes in basal geological conditions have in causing unstable behaviour in ice sheets.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...