ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 19 (2006): 2122–2143, doi:10.1175/JCLI3761.1.
    Description: The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land–atmosphere fluxes, ocean mixed layer processes, and sea ice dynamics. There are significant improvements in the sea ice thickness, polar radiation budgets, tropical sea surface temperatures, and cloud radiative effects. CCSM3 can produce stable climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean–atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface air temperatures. Work is under way to extend CCSM to a more accurate and comprehensive model of the earth's climate system.
    Description: We would like to acknowledge the substantial contributions to and support for the CCSM project from the National Science Foundation (NSF), the Department of Energy (DOE), the National Oceanic and Atmospheric Administration, and the National Aeronautics and Space Administration.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 11 (1995), S. 377-397 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The dependence on horizontal resolution of the climate simulated by the National Center for Atmospheric Research Community Climate Model (CCM2) is explored. Simulations employing R15, T21, T31, T42, T63, and T106 horizontal spectral truncations are compared. Parameters associated with the diagnostic cloud scheme are modified for each resolution to provide similar global average cloud radiative forcing at each resolution. Overall, as with earlier studies, there are large differences between the low resolution R15 and T21 simulations and the medium resolution T42 simulation. Many climate statistics show a monotonic signal with increasing resolution, with the largest variation occurring from low to medium resolution. Although the monotonic signal is often from the low resolution simulations toward atmospheric analyses, in some cases it continues beyond the analyses at the highest resolution. Where convergence occurs, it is not always to the atmospheric analyses, and the highest resolution simulations are not the best by all measures. Although many climate statistics converge, the processes that maintain the climate do not, especially when considered on a regional basis. The implication is that the finer scales are required to capture the nonlinear processes that force the medium scales. Overall, it appears that, at a minimum, T42 resolution is required, but higher resolution would be better. Applications at T42 should take into consideration how model errors indicated by these resolution signals might affect any findings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 11 (1995), S. 377-397 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. The dependence on horizontal resolution of the climate simulated by the National Center for Atmospheric Research Community Climate Model (CCM2) is explored. Simulations employing R15, T21, T31, T42, T63, and T106 horizontal spectral truncations are compared. Parameters associated with the diagnostic cloud scheme are modified for each resolution to provide similar global average cloud radiative forcing at each resolution. Overall, as with earlier studies, there are large differences between the low resolution R15 and T21 simulations and the medium resolution T42 simulation. Many climate statistics show a monotonic signal with increasing resolution, with the largest variation occurring from low to medium resolution. Although the monotonic signal is often from the low resolution simulations toward atmospheric analyses, in some cases it continues beyond the analyses at the highest resolution. Where convergence occurs, it is not always to the atmospheric analyses, and the highest resolution simulations are not the best by all measures. Although many climate statistics converge, the processes that maintain the climate do not, especially when considered on a regional basis. The implication is that the finer scales are required to capture the nonlinear processes that force the medium scales. Overall, it appears that, at a minimum, T42 resolution is required, but higher resolution would be better. Applications at T42 should take into consideration how model errors indicated by these resolution signals might affect any findings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-06-01
    Description: The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land–atmosphere fluxes, ocean mixed layer processes, and sea ice dynamics. There are significant improvements in the sea ice thickness, polar radiation budgets, tropical sea surface temperatures, and cloud radiative effects. CCSM3 can produce stable climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean–atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface air temperatures. Work is under way to extend CCSM to a more accurate and comprehensive model of the earth's climate system.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-06-01
    Description: The Community Atmosphere Model version 3 (CAM3) is the latest generation of a long lineage of general circulation models produced by a collaboration between the National Center for Atmospheric Research (NCAR) and the scientific research community. Many aspects of the hydrological cycle have been changed relative to earlier versions of the model. It is the goal of this paper to document some aspects of the tropical variability of clouds and the hydrologic cycle in CAM3 on time scales shorter than 30 days and to discuss the differences compared to the observed atmosphere and earlier model versions, with a focus on cloud-top brightness temperature, precipitation, and cloud liquid water path. The transient behavior of the model in response to changes in resolution to various numerical methods used to solve the equations for atmospheric dynamics and transport and to the underlying lower boundary condition of sea surface temperature and surface fluxes has been explored. The ratio of stratiform to convective rainfall is much too low in CAM3, compared to observational estimates. It is much higher in CAM3 (10%) than the Community Climate Model version 3 (CCM3; order 1%–2%) but is still a factor of 4–5 too low compared to observational estimates. Some aspects of the model transients are sensitive to resolution. Higher-resolution versions of CAM3 show too much variability (both in amplitude and spatial extent) in brightness temperature on time scales of 2–10 days compared to observational estimates. Precipitation variance is underestimated on time scales from a few hours to 10 days, compared to observations over ocean, although again the biases are reduced compared to previous generations of the model. The diurnal cycle over tropical landmasses is somewhat too large, and there is not enough precipitation during evening hours. The model tends to produce maxima in precipitation and liquid water path that are a few hours earlier than that seen in the observations over both oceans and land.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-06-01
    Description: A new version of the Community Atmosphere Model (CAM) has been developed and released to the climate community. CAM Version 3 (CAM3) is an atmospheric general circulation model that includes the Community Land Model (CLM3), an optional slab ocean model, and a thermodynamic sea ice model. The dynamics and physics in CAM3 have been changed substantially compared to implementations in previous versions. CAM3 includes options for Eulerian spectral, semi-Lagrangian, and finite-volume formulations of the dynamical equations. It supports coupled simulations using either finite-volume or Eulerian dynamics through an explicit set of adjustable parameters governing the model time step, cloud parameterizations, and condensation processes. The model includes major modifications to the parameterizations of moist processes, radiation processes, and aerosols. These changes have improved several aspects of the simulated climate, including more realistic tropical tropopause temperatures, boreal winter land surface temperatures, surface insolation, and clear-sky surface radiation in polar regions. The variation of cloud radiative forcing during ENSO events exhibits much better agreement with satellite observations. Despite these improvements, several systematic biases reduce the fidelity of the simulations. These biases include underestimation of tropical variability, errors in tropical oceanic surface fluxes, underestimation of implied ocean heat transport in the Southern Hemisphere, excessive surface stress in the storm tracks, and offsets in the 500-mb height field and the Aleutian low.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-06-01
    Description: The climate sensitivity of the Community Climate System Model (CCSM) is described in terms of the equilibrium change in surface temperature due to a doubling of carbon dioxide in a slab ocean version of the Community Atmosphere Model (CAM) and the transient climate response, which is the surface temperature change at the point of doubling of carbon dioxide in a 1% yr−1 CO2 simulation with the fully coupled CCSM. For a fixed atmospheric horizontal resolution across model versions, we show that the equilibrium sensitivity has monotonically increased across CSM1.4, CCSM2, to CCSM3 from 2.01° to 2.27° to 2.47°C, respectively. The transient climate response for these versions is 1.44° to 1.09° to 1.48°C, respectively. Using climate feedback analysis, it is shown that both clear-sky and cloudy-sky processes have contributed to the changes in transient climate response. The dependence of these sensitivities on horizontal resolution is also explored. The equilibrium sensitivity of the high-resolution (T85) version of CCSM3 is 2.71°C, while the equilibrium response for the low-resolution model (T31) is 2.32°C. It is shown that the shortwave cloud response of the high-resolution version of the CCSM3 is anomalous compared to the low- and moderate-resolution versions.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-06-01
    Description: The latest version of the Community Climate System Model (CCSM) Community Atmosphere Model version 3 (CAM3) has been released to allow for numerical integration at a variety of horizontal resolutions. One goal of the CAM3 design was to provide comparable large-scale simulation fidelity over a range of horizontal resolutions through modifications to adjustable coefficients in the parameterized treatment of clouds and precipitation. Coefficients are modified to provide similar cloud radiative forcing characteristics for each resolution. Simulations with the CAM3 show robust systematic improvements with higher horizontal resolution for a variety of features, most notably associated with the large-scale dynamical circulation. This paper will focus on simulation differences between the two principal configurations of the CAM3, which differ by a factor of 2 in their horizontal resolution.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-10-01
    Description: A new surface boundary forcing dataset for uncoupled simulations with the Community Atmosphere Model is described. It is a merged product based on the monthly mean Hadley Centre sea ice and SST dataset version 1 (HadISST1) and version 2 of the National Oceanic and Atmospheric Administration (NOAA) weekly optimum interpolation (OI) SST analysis. These two source datasets were also used to supply ocean surface information to the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40). The merged product provides monthly mean sea surface temperature and sea ice concentration data from 1870 to the present: it is updated monthly, and it is freely available for community use. The merging procedure was designed to take full advantage of the higher-resolution SST information inherent in the NOAA OI.v2 analysis.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-06-01
    Description: Forecasts of southeast Pacific stratocumulus at 20°S and 85°W during the East Pacific Investigation of Climate (EPIC) cruise of October 2001 are examined with the ECMWF model, the Atmospheric Model (AM) from GFDL, the Community Atmosphere Model (CAM) from NCAR, and the CAM with a revised atmospheric boundary layer formulation from the University of Washington (CAM-UW). The forecasts are initialized from ECMWF analyses and each model is run for 3–5 days to determine the differences with the EPIC field observations. Observations during the EPIC cruise show a well-mixed boundary layer under a sharp inversion. The inversion height and the cloud layer have a strong and regular diurnal cycle. A key problem common to the models is that the planetary boundary layer (PBL) depth is too shallow when compared to EPIC observations. However, it is suggested that improved PBL depths are achieved with more physically realistic PBL schemes: at one end, CAM uses a dry and surface-driven PBL scheme and produces a very shallow PBL, while the ECWMF model uses an eddy-diffusivity/mass-flux approach and produces a deeper and better-mixed PBL. All the models produce a strong diurnal cycle in the liquid water path (LWP), but there are large differences in the amplitude and phase when compared to the EPIC observations. This, in turn, affects the radiative fluxes at the surface and the surface energy budget. This is particularly relevant for coupled simulations as this can lead to a large SST bias.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...