ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2006-06-01
    Print ISSN: 0916-8370
    Digitale ISSN: 1573-868X
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-08-01
    Print ISSN: 0196-2892
    Digitale ISSN: 1558-0644
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2018-04-27
    Beschreibung: Version 2 of the Level 1b calibrated radiances of the Imaging Infrared Radiometer (IIR) on board the Cloud-Aerosol Lidar and Infrared Satellite Observation (CALIPSO) satellite has been released recently. This new version incorporates corrections of small but systematic seasonal calibration biases previously revealed in Version 1 data products mostly north of 30∘ N. These biases – of different amplitudes in the three IIR channels 8.65 µm (IIR1), 10.6 µm (IIR2), and 12.05 µm (IIR3) – were made apparent by a striping effect in images of IIR inter-channel brightness temperature differences (BTDs) and through seasonal warm biases of nighttime IIR brightness temperatures in the 30–60∘ N latitude range. The latter were highlighted through observed and simulated comparisons with similar channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua spacecraft. To characterize the calibration biases affecting Version 1 data, a semi-empirical approach is developed, which is based on the in-depth analysis of the IIR internal calibration procedure in conjunction with observations such as statistical comparisons with similar MODIS/Aqua channels. Two types of calibration biases are revealed: an equalization bias affecting part of the individual IIR images and a global bias affecting the radiometric level of each image. These biases are observed only when the temperature of the instrument increases, and they are found to be functions of elapsed time since night-to-day transition, regardless of the season. Correction coefficients of Version 1 radiances could thus be defined and implemented in the Version 2 code. As a result, the striping effect seen in Version 1 is significantly attenuated in Version 2. Systematic discrepancies between nighttime and daytime IIR–MODIS BTDs in the 30–60∘ N latitude range in summer are reduced from 0.2 K in Version 1 to 0.1 K in Version 2 for IIR1–MODIS29. For IIR2–MODIS31 and IIR3–MODIS32, they are reduced from 0.4 K to close to zero, except for IIR3–MODIS32 in June, where the night-minus-day difference is around −0.1 K.
    Print ISSN: 1867-1381
    Digitale ISSN: 1867-8548
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2018-01-18
    Beschreibung: A new Version 2 of the Level 1b calibrated radiances of the Imaging Infrared Radiometer (IIR) onboard the Cloud-Aerosol Lidar and Infrared Satellite Observation (CALIPSO) satellite has been released recently. This new version incorporates corrections of small but systematic seasonal calibration biases previously revealed in Version 1 data products mostly north of 30° N. These biases, of different amplitudes in the three IIR channels 8.65 µm (IIR1), 10.6 µm (IIR2), and 12.05 µm (IIR3), were made apparent by a striping effect in images of IIR inter-channel brightness temperature differences (BTDs) and through seasonal warm biases of nighttime IIR brightness temperatures in the 30° N-60° N latitude range. The latter were highlighted through observed and simulated comparisons with similar channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua spacecraft. To characterize the calibration biases affecting Version 1 data, a semi-empirical approach is developed, which is based on the in-depth analysis of the IIR internal calibration procedure in conjunction with observations such as statistical comparisons with similar MODIS/Aqua channels. Two types of calibration biases are revealed: an equalization bias affecting part of the individual IIR images and a global bias affecting the radiometric level of each image. These biases are observed only when the temperature of the instrument increases and they are found to be functions of elapsed time since night-to-day transition, regardless of the season. Correction coefficients of Version 1 radiances could thus be defined and implemented in the Version 2 code. As a result, the striping effect seen in Version 1 is significantly attenuated in Version 2. Systematic discrepancies between nighttime and daytime IIR-MODIS BTDs in the 30° N-60° N latitude range in summer are reduced from 0.2 K in Version 1 to 0.1 K in Version 2 for IIR1-MODIS29. For IIR2-MODIS31 and IIR3-MODIS32, they are reduced from 0.4 K to close to zero, except for IIR3-MODIS32 in June where the night-minus-day difference is around −0.1 K.
    Digitale ISSN: 1867-8610
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-08-15
    Beschreibung: The investigation s main objective is to collect from platforms of opportunity (merchant ships, research vessels) concomitant normalized water-leaving radiance and aerosol optical thickness data over the world s oceans. A global, long-term data set of these variables is needed to verify whether satellite retrievals of normalized water-leaving radiance are within acceptable error limits and, eventually, to adjust atmospheric correction schemes. To achieve this objective, volunteer officers, technicians, and scientists onboard the selected ships collect data from portable SIMBAD and Advanced SIMBAD (SIMBADA) radiometers. These instruments are specifically designed for evaluation of satellite-derived ocean color. They measure radiance in spectral bands typical of ocean-color sensors. The SIMBAD version measures in 5 spectral bands centered at 443, 490, 560, 670, and 870 nm, and the Advanced SIMBAD version in 11 spectral bands centered at 350, 380, 412, 443, 490, 510, 565, 620, 670, 750, and 870 nm. Aerosol optical thickness is obtained by viewing the sun disk like a classic sun photometer. Normalized water-leaving radiance, or marine reflectance, is obtained by viewing the ocean surface through a vertical polarizer in a specific geometry (nadir angle of 45o and relative azimuth angle of 135deg) to minimize direct sun glint and reflected sky radiation. The SIMBAD and SIMBADA data, after proper quality control and processing, are delivered to the SIMBIOS project office for inclusion in the SeaBASS archive. They complement data collected in a similar way by the Laboratoire d'Optique Atmospherique of the University of Lille, France. The SIMBAD and SIMBADA data are used to check the radiometric calibration of satellite ocean-color sensors after launch and to evaluate derived ocean-color variables (i.e., normalized water-leaving radiance, aerosol optical thickness, and aerosol type). Analysis of the SIMBAD and SIMBADA data provides information on the accuracy of satellite retrievals of normalized water-leaving radiance, an understanding of the discrepancies between satellite and in situ data, and algorithms that reduce the discrepancies, contributing to more accurate and consistent global ocean color data sets.
    Schlagwort(e): Oceanography
    Materialart: SIMBIOS Project; 2003 Annual Report; 52-72; NASA/TM-2003-212251
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-11-23
    Beschreibung: Version 2 of the Level 1b calibrated radiances of the Imaging Infrared Radiometer (IIR) on board the Cloud-Aerosol Lidar and Infrared Satellite Observation (CALIPSO) satellite has been released recently. This new version incorporates corrections of small but systematic seasonal calibration biases previously revealed in Version 1 data products mostly north of 30 N. These biases of different amplitudes in the three IIR channels 8.65 m (IIR1), 10.6 m (IIR2), and 12.05 m (IIR3) were made apparent by a striping effect in images of IIR inter-channel brightness temperature differences (BTDs) and through seasonal warm biases of nighttime IIR brightness temperatures in the 3060 N latitude range. The latter were highlighted through observed and simulated comparisons with similar channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua spacecraft. To characterize the calibration biases affecting Version 1 data, a semi-empirical approach is developed, which is based on the in-depth analysis of the IIR internal calibration procedure in conjunction with observations such as statistical comparisons with similar MODIS/Aqua channels. Two types of calibration biases are revealed: an equalization bias affecting part of the individual IIR images and a global bias affecting the radiometric level of each image. These biases are observed only when the temperature of the instrument increases, and they are found to be functions of elapsed time since night-to-day transition, regardless of the season. Correction coefficients of Version 1 radiances could thus be defined and implemented in the Version 2 code. As a result, the striping effect seen in Version 1 is significantly attenuated in Version 2. Systematic discrepancies between nighttime and daytime IIRMODIS BTDs in the 3060 N latitude range in summer are reduced from 0.2 K in Version 1 to 0.1 K in Version 2 for IIR1MODIS29. For IIR2MODIS31 and IIR3MODIS32, they are reduced from 0.4 K to close to zero, except for IIR3MODIS32 in June, where the night-minus-day difference is around 0.1 K.
    Schlagwort(e): Earth Resources and Remote Sensing
    Materialart: NF1676L-28964 , Atmospheric Measurement Techniques (ISSN 1867-1381) (e-ISSN 1867-8548); 11; 4; 2485-2500
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...