ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005
    Keywords: CC 1/3 ; Coordinating Committee ; TOPO-EUROPE
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-01-01
    Description: The timing of Cenozoic surface uplift in NW Europe relies on the assumption that the sedimentary response in basins is synchronous with tectonic processes in the source areas. However, many of the phenomena commonly used to infer recent uplift may as well be a consequence of climate change and sea-level fall. The timing of surface uplift therefore remains unconstrained from the sedimentary record alone, and it becomes necessary to consider the constraints imposed by physically and geologically plausible tectonic mechanisms, which have a causal relation to an initiating agent. The gradual reversal of the regional stress field following the break-up produced minor perturbations to the thermal subsidence on the Norwegian Shelf and in the North Sea. Pulses of increased compression cannot be the cause of Cenozoic land surface uplift and accelerated Neogene basin subsidence. Virtually deformation-free regional vertical movements could have been caused by changes in the density column of the lithosphere and asthenosphere following the emplacement of the Iceland plume. A transient uplift component was produced as the plume displaced denser asthenosphere at the base of the lithosphere. This component decayed as the plume material cooled. Permanent uplift as a result of igneous underplating occurred in areas of a thin lithosphere (some Palaeozoic and Mesozoic basins) or for lithosphere under extension at the time of plume emplacement (the ocean-continent boundary). In areas of a thicker lithosphere (East Greenland, Scotland and Norway) plume emplacement may have triggered a Rayleigh-Taylor instability, causing partial lithospheric delamination and associated transient surface uplift at a decreasing rate throughout Cenozoic time. A possible uplift history for the adjacent land areas hence reads: initial transient surface uplift around the break-up time at 53 Ma caused by plume emplacement, and permanent tectonic uplift caused by lithospheric delamination and associated lithospheric heating. The permanent tectonic uplift increased through Cenozoic time at a decreasing rate. Denudation acted on this evolving topography and reduced the average surface elevation, but significantly increased the elevation of the summit envelope. The marked variations in the sedimentary response in the basins were caused by climatic variations and the generally falling eustatic level. This scenario bridges the gap between the ideas of Paleocene-Eocene uplift versus repeated Cenozoic tectonic activity: the tectonic uplift history was initiated by the emplacement of the Iceland plume, but continued throughout Cenozoic time as a consequence of early plume emplacement, with climatic and eustatic control on denudation. The mechanism is consistent with topography, heat flow, crustal structure, and the Bouguer gravity of Norway, and may be applicable also to East Greenland.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-01-01
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-07-24
    Description: TOPO-EUROPE addresses the 4-D topographic evolution of the orogens and intra-plate regions of Europe through a multidisciplinary approach linking geology, geophysics, geodesy and geotechnology. TOPO-EUROPE integrates monitoring, imaging, reconstruction and modelling of the interplay between processes controlling continental topography and related natural hazards. Until now, research on neotectonics and related topography development of orogens and intra-plate regions has received little attention. TOPO-EUROPE initiates a number of novel studies on the quantification of rates of vertical motions, related tectonically controlled river evolution and land subsidence in carefully selected natural laboratories in Europe. From orogen through platform to continental margin, these natural laboratories include the Alps/Carpathians–Pannonian Basin System, the West and Central European Platform, the Apennines–Aegean–Anatolian region, the Iberian Peninsula, the Scandinavian Continental Margin, the East-European Platform, and the Caucasus–Levant area. TOPO-EUROPE integrates European research facilities and know-how essential to advance the understanding of the role of topography in Environmental Earth System Dynamics. The principal objective of the network is twofold. Namely, to integrate national research programs into a common European network and, furthermore, to integrate activities among TOPO-EUROPE institutes and participants. Key objectives are to provide an interdisciplinary forum to share knowledge and information in the field of the neotectonic and topographic evolution of Europe, to promote and encourage multidisciplinary research on a truly European scale, to increase mobility of scientists and to train young scientists. This paper provides an overview of the state-of-the-art of continental topography research, and of the challenges to TOPO-EUROPE researchers in the targeted natural laboratories
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: The Late Cretaceous–Cenozoic evolution of the North German Basin has been investigated by 3-D thermomechanical finite element modelling. The model solves the equations of motion of an elasto-visco-plastic continuum representing the continental lithosphere. It includes the variations of stress in time and space, the thermal evolution, surface processes and variations in global sea level. The North German Basin became inverted in the Late Cretaceous–Early Cenozoic. The inversion was most intense in the southern part of the basin, i.e. in the Lower Saxony Basin, the Flechtingen High and the Harz. The lower crustal properties vary across the North German Basin. North of the Elbe Line, the lower crust is dense and has high seismic velocity compared to the lower crust south of the Elbe Line. The lower crust with high density and high velocity is assumed to be strong. Lateral variations in lithospheric strength also arise from lateral variations in Moho depth. In areas where the Moho is deep, the upper mantle is warm and the lithosphere is thereby relatively weak. Compression of the lithosphere causes shortening, thickening and surface uplift of relatively weak areas. Tectonic inversion occurs as zones of preexisting weakness are shortened and thickened in compression. Contemporaneously, the margins of the weak zone subside. Cenozoic subsidence of the northern part of the North German Basin is explained as a combination of thermal subsidence and a small amount of deformation and surface uplift during compression of the stronger crust in the north. The modelled deformation patterns and resulting sediment isopachs correlate with observations from the area. This verifies the usefulness and importance of thermomechanical models in the investigation of intraplate sedimentary basin formation.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...