ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2019-07-19
    Description: BACKGROUND: Coordinated locomotion has proven to be challenging for many astronauts following long duration spaceflight. As NASA's vision for spaceflight points toward interplanetary travel, we must prepare for unassisted landings, where crewmembers may need to perform mission critical tasks within minutes of landing. Thus, it is vital to develop a knowledge base from which operational guidelines can be written that define when astronauts can be expected to safely perform certain tasks. Data obtained during the Field Test experiment (FT) will add important insight to this knowledge base. Specifically, we aim to develop a recovery timeline of functional sensorimotor performance during the first 24 hours and several days after landing. METHODS: FT is an ongoing study of 30 long-duration ISS crewmembers. Thus far, 9 have completed the full FT (5 U.S. Orbital Segment [USOS] astronauts and 4 Russian cosmonauts) and 4 more consented and launching within the next year. This is in addition to the eighteen crewmembers that participated in the pilot FT (11 USOS and 7 Russian crewmembers). The FT is conducted three times preflight and three times during the first 24 hours after landing. All crewmembers were tested in Kazakhstan in either the medical tent at the Soyuz landing site (~one hour post-landing), or at the airport (~four hours post-landing). The USOS crewmembers were also tested at the refueling stop (~12 hours post-landing) and at the NASA Johnson Space Center (~24 hours post-landing) and a final session 7 days post-landing. Crewmembers are instrumented with 9 inertial measurement unit sensors that measure acceleration and angular displacement (APDM's Emerald Sensors) and foot pressure-sensing insoles that measure force, acceleration, and center of pressure (Moticon GmbH, Munich, Germany) along with heart rate and blood pressure recording instrumentation. The FT consists of 12 tasks, but here we will focus on the most challenging task, the Tandem Walk, which was also performed as part of pilot FT. To perform the Tandem Walk, subjects begin with their feet together, their arms crossed at their chest and eyes closed. When ready, they brought one foot forward and touched the heel of their foot to their toe, repeating with the other foot, and continuing for about 10 steps. Three trials were collected with the eyes closed and a fourth trial was collected with eyes open. There are four metrics which are used to determine the performance level of the Tandem Walk. The first is percent correct steps. For a step to be counted as correct, the foot could not touch the ground while bringing it forward (no side stepping), eyes must stay closed during the eyes closed trials, the heel and toe should be touching, or almost touching (no large gaps) and there shouldn't be more than a three second pause between steps. Three judges score each step and the median of the three scores is kept. The second metric is the average step speed, or the number of steps/time to complete them. Thirdly, the root mean squared (RMS) error in the resultant trunk acceleration is used to determine the amount of upper body instability observed during the task. Finally, the RMS error of the mediolateral center of pressure as measured by the Moticon insoles is used to determine the mediolateral instability at the foot level. These four parameters are combined into a new overall Tandem Walk Parameter. RESULTS: Preliminary results show that crewmembers perform the Tandem Walk significantly worse the first 24 hours after landing as compared to their baseline performance. We find that each of the four performance metrics is significantly worse immediately after landing. We will present the results of tandem walk performance during the FT thus far. We will also combine these with the 18 crewmembers that participated in the pilot FT, concentrating on the level of performance and recovery rate. CONCLUSION: The Tandem Walk data collected as part of the FT experiment will provide invaluable information on the performance capabilities of astronauts during the first 24 hours after returning from long-duration spaceflight that can be used in planning future Mars, or other deep-space missions with unassisted landings. FT will determine the average sensorimotor recovery timeline and inform return-to-duty guidelines for unassisted landings.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37994 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Astronauts returning from space flight show significant inter-subject variations in their abilities to readapt to a gravitational environment because of their innate sensory weighting. The ability to predict the manner and degree to which each individual astronaut will be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. We hypothesize participant's ability to utilize individual sensory information (vision, proprioception and vestibular) influences adaptation in sensorimotor performance after space flight. The goal of this study is to develop a reliable protocol to test proprioceptive utilization in a functional postural control task. Subjects "stand" in a supine position while strapped to a backpack frame holding a friction-free device using air-bearings that allow the subject to move freely in the frontal plane, similar to when in upright standing. The frame is attached to a pneumatic cylinder, which can provide different levels of a gravity-like force that the subject must balance against to remain "upright". The supine posture with eyes closed ensures reduced vestibular and visual contribution to postural control suggesting somatosensory and/or non-otolith vestibular inputs will provide relevant information for maintaining balance control in this task. This setup is called the gravity bed. Fourteen healthy subjects carried out three trials each with eyes open alternated with eyes closed, "standing" on their dominant leg in the gravity bed environment while loaded with 60 percent of their body weight. Subjects were instructed to: "use your sense of sway about the ankle and pressure changes under the foot to maintain balance." Maximum length of a trial was 45 seconds. A force plate underneath the foot recorded forces and moments during the trial and an inertial measurement unit (IMU) attached on the backpack's frame near the center of mass of the subject recorded upper body postural responses. Series of linear and non-linear analyses were carried out on several force plate and IMU data including stabilogram diffusion analysis on the center of pressure (COP) to find a subset of parameters that were sensitive to detect differences in postural performance between eyes open and closed conditions. Results revealed that seven parameters (root mean square (RMS) of medio-lateral (ML) COP, range of ML COP, RMS of roll moment, range of trunk roll, minimum time-to-boundary (TTB), integrated TTB, and critical mean square planar displacement (delta r (sup 2) (sub c)) were significantly different between eyes open and closed conditions. We will present data to show the efficacy of using performance in single leg stance with eyes closed on the gravity bed to assess individuals' ability to utilize proprioceptive information in a functional postural control task to predict re-adaptation for sensorimotor and functional performance.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34840 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Introduction: Over the last two decades, several studies have been published on the impact of long-duration (i.e., 22 days or longer) spaceflight on the central nervous system (CNS). In consideration of the health and performance of crewmembers in flight and post-flight, we are conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. Multiple studies have demonstrated the effects of spaceflight on the vestibular system. One of the supporting tests conducted in this protocol is the Vestibular Evoked Myogenic Potential (VEMP) test that provides a unilateral measure of otolith (saccule and utricle) function. A different approach was taken for ocular VEMP (oVEMP) testing using a head striker system (Wackym et al. 2012). The oVEMP is generally considered to be a measure of utricle function. The the otolithic input to the inferior oblique muscle is predominately from the utricular macula. Thus, quantitatively, oVEMP tests utricular function. Another practical extension of these relationships is that the oVEMP reflects the superior vestibular nerve function. Methods: Ground testing was administered on 16 control subjects and for 8 subjects over four repeated sessions spanning 70 days. The oVEMP was elicitied via a hand held striker by a vibrotactile pulse presented at the rate of 1 Hz for 24 seconds on the side of the head as subjects lay supine on a gurney. Subjects were directed to gaze approximately 25 degrees above straight ahead in semi-darkness. For the oVEMP electromyograms will be recorded with active bipolar electrodes (Delsys Inc., Boston, MA) on the infra-orbital ridge 1 cm below the eyelid with a reference electrode on the below the knee cap. The EMG potentials were amplified; band-pass filtered using a BagnoliTM Desktop EMG System (Delsys Inc., Boston, MA, USA). This EMG signal is sampled at 10 kHz and the data stimulus onset to 100 MS was averaged over 24 trial repetitions for the vibrotactile VEMP. The typical oVEMP EMG response is an excitatory potential with first peak occurring at 11-12 ms and second peak at 18 ms. This requires a total recording time of approximately 29 seconds per trial which includes 5 seconds of no vibrotactile stimulation at the beginning of the protocol. The primary dependent measures consist of the latency and peak-to-peak amplitude from the EMG signals, which will be normalized to EMG levels at the beginning of the protocol. Data were collected for 3 repeated trials with striker stimulation on both the left and right side of the head Results: The oVEMP p1 range was observed at 3-14 ms and n1 at 7-19 ms. The striker system provided a consistent and rapid method for oVEMP testing. Discussion: Crew testing is in progress to determine changes in results between pre and post flight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34865 , Human Research Program Investigators'' Workshop: Integrated Pathways to Mars; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: The One Year Mission was designed to aid in determining the effect that extending the duration on orbit aboard the International Space Station (ISS) would have on a number of biological and physiological systems. Two crewmembers were selected to participate in this endeavor, one U.S. On-Orbit Segment (USOS) astronaut and one Russian cosmonaut. The Neuroscience and Cardiovascular and Vision Laboratories at the Johnson Space Center and the Sensory-Motor and Countermeasures Division within the Institute for Biomedical Problems were selected to investigate vestibular, sensorimotor and cardiovascular function with the two long-duration crewmembers using the established methodology developed for the Field Test (FT).
    Keywords: Behavioral Sciences; Aerospace Medicine
    Type: JSC-CN-38037 , Human Resource Program Investigator''s Workshop; Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: To date, changes in functional performance have been systematically studied after short-duration space flight. As important as the postflight functional changes have been, full functional recovery has never been investigated or established for long-duration flights. The Pilot Field Test (PFT) experiment, conducted with participation of ISS crewmembers traveling on Soyuz expeditions 34S - 41S, is comprised of several tasks designed to study the recovery of sensorimotor abilities of astronauts during the first 24 hours after landing and beyond. The objective of the Seat Egress - Walk and Obstacle Test, developed by NASA's Russian collaborators at the Institute for Biomedical Problems, is to address this gap in knowledge. This will allow us to characterize the ability of crewmembers to perform critical mission requirements that they will be expected to perform after an unassisted landing following 6 to 12 months in microgravity.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-34945 , Human Research Program Investigators'' Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: Locomotion requires integration of visual, vestibular, and somatosensory information to produce the appropriate motor output to control movement. The degree to which these sensory inputs are weighted and reorganized in discordant sensory environments varies by individual and may be predictive of the ability to adapt to novel environments. The goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to inform the design of training countermeasures designed to enhance the ability of astronauts to adapt to gravitational transitions improving balance and locomotor performance after a Mars landing and enhancing egress capability after a landing on Earth.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34838 , 2016 Human Research Program Investigators'' Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: Astronauts experience sensorimotor disturbances during their initial exposure to microgravity and during the re-adaptation phase following a return to an Earth-gravitational environment. These alterations may disrupt crewmembers' ability to perform mission critical functional tasks requiring ambulation, manual control and gaze stability. Interestingly, astronauts who return from spaceflight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts would be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. For such an approach to succeed, we must develop predictive measures of sensorimotor adaptability that will allow us to foresee, before actual spaceflight, which crewmembers are likely to experience the greatest challenges to their adaptive capacities. The goals of this project are to identify and characterize this set of predictive measures. Our approach includes: 1) behavioral tests to assess sensory bias and adaptability quantified using both strategic and plastic-adaptive responses; 2) imaging to determine individual brain morphological and functional features, using structural magnetic resonance imaging (MRI), diffusion tensor imaging, resting state functional connectivity MRI, and sensorimotor adaptation task-related functional brain activation; and 3) assessment of genotypic markers of genetic polymorphisms in the catechol-O-methyl transferase, dopamine receptor D2, and brain-derived neurotrophic factor genes and genetic polymorphisms of alpha2-adrenergic receptors that play a role in the neural pathways underlying sensorimotor adaptation. We anticipate that these predictive measures will be significantly correlated with individual differences in sensorimotor adaptability after long-duration spaceflight and exposure to an analog bed rest environment. We will be conducting a retrospective study, leveraging data already collected from relevant ongoing or completed bed rest and spaceflight studies. These data will be combined with predictor metrics that will be collected prospectively (as described for behavioral, brain imaging and genomic measures) from these returning subjects to build models for predicting post-mission (bed rest - non-astronauts or space flight - astronauts) adaptive capability as manifested in their outcome measures. To date we have completed a study on 15 normal subjects with all of the above measures. In this presentation we will discuss the optimized set of tests for predictive metrics to be used for evaluating post mission adaptive capability as manifested in their outcome measures. Comparisons of model performance will allow us to better design and implement sensorimotor adaptability training countermeasures against decrements in post-mission adaptive capability that are customized for each crewmember's sensory biases, adaptive capacity, brain structure and functional capacities, and genetic predispositions. The ability to customize adaptability training will allow more efficient use of crew time during training and will optimize training prescriptions for astronauts to ensure expected outcomes.
    Keywords: Aerospace Medicine; Behavioral Sciences
    Type: JSC-CN-34851 , 2016 Human Research Program Investigator''s Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-13
    Description: Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the readapation phase following a return to a gravitational environment. These alterations may lead to disruption in the ability to perform mission critical functions during and after these gravitational transitions. Astronauts show significant inter-subject variation in adaptive capability following gravitational transitions. The way each individual's brain synthesizes the available visual, vestibular and somatosensory information is likely the basis for much of the variation. Identifying the presence of biases in each person's use of information available from these sensorimotor subsystems and relating it to their ability to adapt to a novel locomotor task will allow us to customize a training program designed to enhance sensorimotor adaptability. Eight tests are being used to measure sensorimotor subsystem performance. Three of these use measures of body sway to characterize balance during varying sensorimotor challenges. The effect of vision is assessed by repeating conditions with eyes open and eyes closed. Standing on foam, or on a support surface that pitches to maintain a constant ankle angle provide somatosensory challenges. Information from the vestibular system is isolated when vision is removed and the support surface is compromised, and it is challenged when the tasks are done while the head is in motion. The integration and dominance of visual information is assessed in three additional tests. The Rod & Frame Test measures the degree to which a subject's perception of the visual vertical is affected by the orientation of a tilted frame in the periphery. Locomotor visual dependence is determined by assessing how much an oscillating virtual visual world affects a treadmill-walking subject. In the third of the visual manipulation tests, subjects walk an obstacle course while wearing up-down reversing prisms. The two remaining tests include direct measures of knee and ankle proprioception and a functional movement assessment that screens for movement restrictions and asymmetries. To assess each subject's locomotor adaptability subjects walk for twenty minutes on a treadmill that oscillates laterally at 0.3 Hz. Throughout the test metabolic cost provides a measure of exertion and step frequency provides a measure of stability. Additionally, at four points during the perturbation period, reaction time tests are used to probe changes in the amount of mental effort being used to perform the task. As with the adaptive capability observed in astronauts during gravitational transitions, our data shows significant variability between subjects. To aid in the analysis of the results, custom software tools have been developed to enhance in the visualization of the large number of output variables. Preliminary analyses of the data collected to date do not show a strong relationship between adaptability and any single predictor variable. Analysis continues to identify a multifactorial predictor outcome "signature" that do inform us of locomotor adaptability.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32200 , NASA''s Human Research Program Investigator''s Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-13
    Description: Exposure to the microgravity environment during spaceflight missions impacts crewmembers' sensorimotor function. Bock et al. [1] studied the cognitive demands of human sensorimotor performance and dual tasking during long duration missions and concluded that both stress and scarcity of cognitive resources required for sensorimotor adaptation may be responsible for these deficits during spaceflight. Therefore, in consideration of the health and performance of crewmembers in- and post-flight, we are conducting this study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. The data presented will focus on the behavioral measures that were collected pre-, in- and post-flight including spatial cognition, processing speed, bimanual coordination, functional mobility, computerized dynamic posturography (CDP), and vibrotactile induced vestibular evoked myogenic potential (VEMP). To date, data were collected over the course of two pre-flight sessions and four post-flight sessions on five crewmembers (n=13) using the protocol described in Koppelmans et al. [2]. Balance control was assessed using CDP, with eyes closed and a sway-referenced base of support (Sensory Organization Test 5), with and without head movements in the pitch plane. Spatial working memory was assessed using Thurston's Card Rotation Test and a Mental Rotation Test. The Rod and Frame Test was performed to test visual dependence. The Digit Symbol Substitution Test was performed to evaluate processing speed, and the Purdue Pegboard Task was performed to test bimanual coordination. Vestibular function was assessed by eliciting ocular VEMP via a hand held striker on the side of the head as subjects lay supine on a gurney. Subjects also performed the Functional Mobility Test of walking through an obstacle course to assess rate of early motor learning. Data were also collected on the same crewmembers during three in-flight sessions on the International Space Station (ISS). In-flight, spatial working memory was assessed using the Mental Rotation Test, adaptation to visuo-motor transformation in manual control was assessed using the Sensorimotor Adaptation Test, and multi-tasking ability was assessed using the Dual Task Test. These three tests were performed in a strapped-in configuration mimicking a seated position - waist bungees pulled the crewmember toward the "floor" with feet secured in foot loops. The Mental Rotation Test was also performed in a free-floating configuration while the crewmember floated while holding on to the gamepad controller used to provide input that was secured to the equipment rack on the ISS. Preliminary findings from data collected to date, will be included in the presentation. Eventual comparison to results from supporting bed rest and longitudinal studies will enable the parsing out of the multiple mechanisms contributing to any observed spaceflight-induced sensorimotor and cognitive behavioral changes.
    Keywords: Aerospace Medicine; Behavioral Sciences
    Type: JSC-CN-38016 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS 2017) Annual Meeting; Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...